# LAKE ONTARIO FISH COMMUNITIES AND FISHERIES:

# 2010 ANNUAL REPORT OF THE LAKE ONTARIO MANAGEMENT UNIT

## LAKE ONTARIO FISH COMMUNITIES AND FISHERIES:

# 2010 ANNUAL REPORT OF THE LAKE ONTARIO MANAGEMENT UNIT

Prepared for the Great Lakes Fishery Commission 2011 Lake Committee Meetings Ypsilanti, MI USA

March 21-25, 2011

© 2011, Queen's Printer for Ontario Printed in Picton, Ontario, Canada

March 2011

Report ISSN 1201-8449

Please cite this report as follows:

Ontario Ministry of Natural Resources. 2011. Lake Ontario Fish Communities and Fisheries: 2010 Annual Report of the Lake Ontario Management Unit. Ontario Ministry of Natural Resources, Picton, Ontario, Canada.

**Report available on the following website:** http://www.glfc.org/lakecom/loc/mgmt\_unit/index.html

## **TABLE OF CONTENTS**

| Foreword |  | V |
|----------|--|---|
|----------|--|---|

## 1. Status of Major Species

| 1.1 Chinook Salmon  |     |
|---------------------|-----|
| 1.2 Rainbow Trout   | . 1 |
| 1.3 Lake Trout      | . 1 |
| 1.4 Lake Whitefish  |     |
| 1.5 Northern Pike   |     |
| 1.6 Muskellunge     | . 1 |
| 1.7 American Eel    |     |
| 1.8 Smallmouth Bass | . 2 |
| 1.9 Largemouth Bass | . 2 |
| 1.10 Panfish        | . 2 |
| 1.11 Yellow Perch   | . 2 |
| 1.12 Walleye        | . 2 |
| 1.13 Prey Fish      | . 3 |
| 1.14 Round Goby     |     |

## 2. Index Fishing Projects

| 2.1 Ganaraska Fishway Rainbow Trout Assessment                              |    |
|-----------------------------------------------------------------------------|----|
| 2.2 Eastern Lake Ontario and Bay of Quinte Fish Community Index Gillnetting | 6  |
| 2.3 Eastern Lake Ontario and Bay of Quinte Fish Community Index Trawling    | 16 |
| 2.4 Lake-wide Hydroacoustic Assessment of Prey Fish                         |    |
| 2.5 Nearshore Community Index Netting                                       |    |
| 2.6 St. Lawrence River Fish Community Index Netting—Lake St. Francis        |    |
| 2.7 Juvenile Atlantic Salmon Parr Survey                                    |    |
| 2.8 Credit River Chinook Assessment.                                        |    |
|                                                                             |    |

## 3. Recreational Fishery Surveys

| 3.1 Chinook Salmon Mark and Tag Monitoring 41 |
|-----------------------------------------------|
|-----------------------------------------------|

## 4. Commercial Fishery

| 4.1 Quota and Harvest Summary                | 43 |
|----------------------------------------------|----|
| 4.2 Lake Whitefish Commercial Catch Sampling | 47 |
| 4.3 Northern Pike Commercial Catch Sampling  |    |
| 5. Age and Growth Summary                    | 52 |
| 6. Contaminant Monitoring                    | 53 |
| 7. Stocking Program                          | 54 |

# 8. Biological Diversity of Lake Ontario's Fish Species

| 8.1 Introduction               | 64 |
|--------------------------------|----|
| 8.2 Native Species Restoration | 64 |
| 8.3 Non-native Species         |    |
| 1                              |    |

## 9. Management Planning

| 9.1 Fisheries Management Zone 20 Council (FMZ20)                             |    |
|------------------------------------------------------------------------------|----|
| 9.2 Lake Ontario Commercial Fishing Liaison Committee                        |    |
| 9.3 Fisheries Management Plans                                               |    |
| 10. Research Activities                                                      |    |
| 10.1 Hemimysis                                                               | 73 |
| 10.2 Impediments to Lake Trout Rehabilitation                                |    |
| 10.3 Fish Health—Metabolic costs of sub-lethal contaminant exposure          |    |
| 10.4 Habitat Effects on Food Web Structure                                   |    |
| 10.5 Project Quinte                                                          | 76 |
| 11. Partnerships                                                             |    |
| 11.1 St. Lawrence River Muskellunge Spawning and Nursery Site Identification |    |
| 11.2 Nearshore Community Index Netting                                       |    |
| 12. Staff 2010                                                               |    |
| 13. Operational Field and Lab Schedule 2010                                  | 81 |
| 14. Primary Publications 2010                                                |    |

# Lake Ontario Fish Communities and Fisheries: 2010 Annual Report of the Lake Ontario Management Unit

### Foreword

The Lake Ontario Management Unit (LOMU) is pleased to release its Annual Report of assessment and management activities carried out during 2010.

Lake Ontario, the Bay of Quinte and the St. Lawrence River ecosystem has changed over the last two centuries in response to the pressures of industrial development, land settlement and agricultural practices, fishing, pollution, loss of native species, and the introduction of new species. Fisheries management today requires a pragmatic approach that recognizes the changes that have occurred and the current state of the ecosystem. Managers must consider the ecological realities that shape the fishery, such as the natural capacity of the lake to produce fish, the decline or recovery of native species, the impact of non-native species, changes to fish habitat and climate change, along with social and economic objectives.

Despite dramatic changes, the Lake Ontario ecosystem is resilient and continues to support an important and world-class fishery valued at over \$100 million. In 2010, the Lake Ontario recreational fishery produced Chinook salmon up to 40 lb, and anglers reported excellent catches of rainbow trout, Coho salmon and brown trout. Atlantic salmon, once native to Lake Ontario but now locally extinct, are being reintroduced in an effort to improve native biodiversity and ecosystem health. The Bay of Quinte and the St. Lawrence River are famous for walleye, perch and other pan-fish, bass, and muskellunge. The subsistence fishery is culturally important and provides a traditional food source for several communities. The commercial fishery has declined in recent years; however, it continues to help support the local economy and provides a wholesome local food source. The Lake Ontario and St. Lawrence River commercial fishery harvested over 600,000 lb of locally caught fish with a landed value of over \$700,000.

LOMU continues to work closely with Canadian federal agencies, First Nations, provincial governments, various U.S. federal and state agencies, and non-government partners to develop and implement plans to protect and restore native species and to maintain sustainable commercial and recreational fisheries.

We express our sincere appreciation to the many partners and volunteers who contributed to the successful delivery of LOMU initiatives. LOMU gratefully acknowledges the important contribution of the Lake Ontario Liaison Committee, the Fisheries Management Zone 20 Council (FMZ20) members, the Ringwood hatchery partnership with OFAH, the Metro East Anglers and many other volunteers, and the anglers that participated in the diary and assessment programs.

Our team of skilled and committed staff delivered an exemplary program of field, laboratory and analytical work that will provide long-term benefits to the citizens of Ontario. We are pleased to share the important information about the activities and findings of the Lake Ontario Management Unit from 2010.

Andy Todd Lake Ontario Manager 613-476-3147 For more detailed information or copies of this report please contact:

Lake Ontario Management Unit Ontario Ministry of Natural Resources R.R. #4, 41 Hatchery Lane Picton, ON K0K 2T0 CAN Telephone: (613) 476-2400 FAX: (613) 476-7131 E-mail: linda.blake@ontario.ca

## 1. Status of Major Species

The following is an overview of the status of major species in Ontario waters of Lake Ontario for 2010. The overview draws largely upon information presented in the chapters and sections that follow in this report. The fish communities of Lake Ontario continue to respond to changes in the ecosystem attributed to the effects of dreissenid mussels and other stresses.

#### 1.1 Chinook Salmon

Growth and condition of age-2 and age-3 Chinook salmon in the Credit River increased in 2010 and were generally as high as or higher than long term averages since 1989 (see Section 2.8). Estimates of wild production of Chinook salmon in Lake Ontario were consistent in index gillnets and angler catches (44% and 35% for the 2008 and 2009 year classes, respectively, see Section 3.1) based on mass fin clipping of all stocked fish since 2008. Wild Chinook salmon production in the Credit River was considerably lower (17% and 9% for the 2008 and 2009 year classes, respectively; see Section 2.8). Lamprey marking on Chinook salmon was elevated compared with the past three decades but still remains low compared with the 1970s (see Section 2.8). Although current prey fish populations support increased growth of Chinook salmon at densities elevated by natural reproduction, declining alewife production puts the long term stability of the fish community in question.

#### **1.2 Rainbow Trout**

Counts of wild rainbow trout at the Ganaraska River fishway have been stable since 1998, with a slight increase in 2010. This increase is consistent with higher catches of rainbow trout in recent New York and Ontario angler surveys, and may be related to size restrictions on angler harvest of rainbow trout in New York waters of Lake Ontario and to increased predation of salmon and trout on round gobies in recent years. Condition of rainbow trout in the Ganaraska River in 2010 increased from the previous 3 years and is close to the long term average (see Section 2.1). Lamprey marks on rainbow trout continue to be a concern as they remain comparable with levels observed in the 1970s before lamprey control (see Section 2.1).

#### 1.3 Lake Trout

The abundance of adult lake trout remains low, however, after several years of improved early-life survival of stocked fish, there are signs of improvement in the adult population (see Section 2.2).

#### 1.4 Lake Whitefish

Abundance of lake whitefish in assessment gillnets is very low (see Section 2.2). Many strong year-classes produced in the late 1980s and early 1990s are aging and declining in both assessment gillnets (see Section 2.2) and commercial gear (see Section 4.2). Reproductive success was very low after the mid 1990s until a strong year-class was produced in 2003 (see Section 2.3). Growth of these young fish is very slow and age-at-maturity is delayed by at about two years. The condition of lake whitefish caught in summer assessment gillnets improved after the mid to late 1990s but condition of fish caught during the fall remained low. Commercial lake whitefish harvest in 2010 (43,236 lb) was down compared to 2009 due primarily to decreased fishing effort (see Section 4.1 and 4.2).

#### **1.5 Northern Pike**

Northern pike, while not abundant in the open waters of Lake Ontario are common in many embayment and nearshore areas (see Sections 2.2, 2.3 and 2.5). There has been a further decrease in the abundance of northern pike in Lake St. Francis (see Section 2.6).

#### 1.6 Muskellunge

The muskellunge is an important native species and top predator in the St. Lawrence River ecosystem. A significant mortality event in the spring of 2005 and 2006, related to viral hemorrhagic septicemia (VHS), has caused concern over the status of St. Lawrence River muskellunge . MNR is examining muskellunge management options with the

FMZ20 Council which may include increased minimum size limits, to protect large spawning fish, and public education. MNR is continuing to work with partners to identify and protect muskellunge spawning and nursery habitats in the St. Lawrence River (see Section 11.1)

#### 1.7 American Eel

The total number of eel migrating upstream at the ladders, located at the Moses-Saunders Hydroelectric Dam on the St. Lawrence River has been increasing since 2001; however, the number is still less than 3% of the migrations observed during the 1970s and 1980s. Even with the closure of the commercial fishery (2004), the abundance of large yellow eels in the Lake Ontario/upper St. Lawrence River ecosystem remains low. Ontario Power Generation (OPG) stocked eels into the upper St. Lawrence River and the Bay of Quinte (see Sections 8.1 and 8.2) and initial results suggest that stocked eels are surviving well, growing quickly and that they are dispersing from stocking sites. Some stocked eels are maturing into males and migrating at a small size; this has not been observed before. Ontario is continuing to work with other management agencies and stakeholders to encourage the safe passage of eels around hydro dams. OPG conducted a pilot project to trap large yellow eels and release them below all barriers to downstream migration. Preliminary results of this project suggest that some of the transported eels do migrate towards the spawning grounds which should contribute to the global spawning stock. Sustainable management practices throughout the range of this panmictic species will be required to restore eel abundance in North America (see Section 8.2).

#### **1.8 Smallmouth Bass**

Assessment gillnet and nearshore trapnet indices indicate that smallmouth bass remain at low to moderate abundance levels in the nearshore areas of Lake Ontario (see Section 2.2 and Section 2.5). The smallmouth bass population in Lake St. Francis decreased in 2010 (see Section 2.6).

#### **1.9 Largemouth Bass**

Assessment trappet information indicates that largemouth bass abundance increased in the Bay of Quinte following increases in water transparency and aquatic vegetation in the late 1990s. Their current level of abundance exceeds that of walleye in upper Bay of Quinte nearshore areas. Largemouth bass are moderately abundant in other embayment areas of Lake Ontario (see Section 2.5).

#### 1.10 Panfish

Panfish, particularly pumpkinseed, bluegill and black crappie, increased after re-establishment of submerged aquatic macrophytes in the Bay of Quinte (see Sections 2.2 and 2.3). These events were associated with postdreissenid mussel invasion in the 1990s. Panfish are also common in other Lake Ontario embayments and nearshore areas (see Section 2.5). Together, these panfish species now form a significant component of the commercial fishery; second only to yellow perch in terms of dollar value (see Section 4.1).

#### 1.11 Yellow Perch

Yellow perch is one of the most common species in the nearshore areas. Current perch abundance in Lake Ontario is low to moderate compared to past levels (see Section 2.2). Abundance is relatively high in the Bay of Quinte (see Sections 2.2 and 2.3). Abundance of yellow perch in Lake St. Francis remains high (see Section 2.6). Yellow perch commercial harvest in 2010 was similar to that for 2009 in Lake Ontario and the St. Lawrence River (see Section 4.1). Yellow perch are currently the most valuable species in the commercial fishery.

#### 1.12 Walleye

The eastern Lake Ontario/Bay of Quinte walleye population has been stable since 2001 (Section 2.2 and 2.3). Assessment gillnet abundance indices for juvenile (age-1 to age 4) and mature walleye indicate that the walleye population has stabilized or increased slightly following their steady decline throughout the 1990s. Recruitment indices, based on young of year catch in bottom trawls, indicate that a strong year-class was produced in 2003, and that above average (i.e. average for the last ten years) year-classes were produced in 2007 and 2008. Catches at

age-1 in assessment gillnets suggest that the 2004 year-class is weaker and the 2005 year-class stronger than first indicated by the trawls. The 2003, 2005, 2007 and 2008 year-classes also figure prominently in most assessments. The 2009 and 2010 year-classes are of moderate abundance. Based on these recent recruitment levels, the walleye population should remain stable or increase, at least through the next few years. The walleye population in Lake St. Francis continues to improve (see Section 2.6).

#### 1.13 Prey Fish

The hydroacoustic survey of prey fish was not conducted in 2010 due to weather and scheduling problems.

#### 1.14 Round Goby

Round goby invaded Lake Ontario in the late 1990s and first appeared in routine Bay of Quinte assessment bottom trawls in 2001 and gillnets in 2002. Goby distribution expanded to include all areas of eastern Lake Ontario and the Bay of Quinte to depths of at least 36 m by 2006. Goby abundance appears to have peaked and declined in the Bay of Quinte. In Lake Ontario, abundance has remained high and stable or increased over the last three years (see Sections 2.2 and 2.3).

#### **2. Index Fishing Projects**

#### 2.1 Ganaraska Fishway Rainbow Trout Assessment

The fishway on the Ganaraska River at Port Hope has been in operation since 1974. Prior to 1987 counts of rainbow trout were complete, based on hand lift and visual counts. Since 1987 fish counts were made with a Pulsar Model 550 conductivity type fish counter. Estimates of fish missed by the counter were made through calibration with visual counts. In 2010 a significant number of rainbow trout were observed entering the fishway prior to installation of the fish counter on March 18. Estimates of the run prior to installation of the counter were made by modelling the relationship of rainbow trout counts with maximum air temperature and stream flow. This model is still under development and the estimates were conservative by design. The count of rainbow trout in the spring run has been stable since 1998, and in 2010 was 6,923 fish (Table 2.1.1), the highest value since 1997 (Fig. 2.1.1).

Rainbow trout were measured and weighed during the spawning run. Rainbow trout body condition was determined as the estimated weight of a 635 mm (25 in) fish at the Ganaraska River. In 2010, the weights of male (3,072 g) and female (3,139 g) rainbow trout were significantly greater (P<0.05) than in 2007, 2008 or, 2009, and were close to the long-term average for the data (Table 2.1.2).

In 2010, lamprey marks on rainbow trout in the Ganaraska River declined 17% to 0.528 marks/fish (Table 2.1.3), and still remained more than three times higher than the average for 1990-2003 (Fig. 2.1.2). The marking rates from 2004-2010 were similar to levels in the 1970s (Fig. 2.1.2). A high incidence of A1 and B1 marks<sup>1</sup> since 2004 indicated very recent attacks relative to rainbow trout migrating into the Ganaraska River (Table 2.1.4).

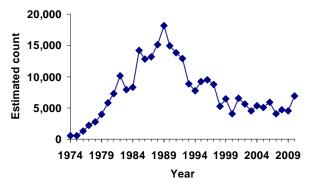



FIG. 2.1.1. Estimated upstream counts of rainbow trout at the Ganaraska River fishway at Port Hope, Ontario during spring, 1974 to 2010. Estimates for 1980, 1982, 1984, 1986, 1992, and 2002 were determined from adjacent years with virtual population analysis.

TABLE 2.1.1. Observed and estimated upstream counts of rainbow trout at the Ganaraska River fishway at Port Hope, Ontario during spring, 1974-2010. Observed counts are the sum of hand lifted fish and visual or electronic counts. As electronic counts are biased low, they were scaled based on simultaneous visual and electronic counts to obtain estimated counts.

| Year | Observed count | Estimated count |
|------|----------------|-----------------|
| 1974 | 527            | 527             |
| 1975 | 591            | 591             |
| 1976 | 1,281          | 1,281           |
| 1977 | 2,237          | 2,237           |
| 1978 | 2,724          | 2,724           |
| 1979 | 4,004          | 4,004           |
| 1980 |                | 5,817           |
| 1981 | 7,306          | 7,306           |
| 1982 |                | 10,127          |
| 1983 | 7,907          | 7,907           |
| 1984 |                | 8,277           |
| 1985 | 14,188         | 14,188          |
| 1986 |                | 12,785          |
| 1987 | 10,603         | 13,144          |
| 1988 | 10,983         | 15,154          |
| 1989 | 13,121         | 18,169          |
| 1990 | 10,184         | 14,888          |
| 1991 | 9,366          | 13,804          |
| 1992 |                | 12,905          |
| 1993 | 7,233          | 8,860           |
| 1994 | 6,249          | 7,749           |
| 1995 | 7,859          | 9,262           |
| 1996 | 8,084          | 9,454           |
| 1997 | 7,696          | 8,768           |
| 1998 | 3,808          | 5,288           |
| 1999 | 5,706          | 6,442           |
| 2000 | 3,382          | 4,050           |
| 2001 | 5,365          | 6,527           |
| 2002 |                | 5,652           |
| 2003 | 3,897          | 4,494           |
| 2004 | 4,452          | 5,308           |
| 2005 | 4,417          | 5,055           |
| 2006 | 5,171          | 5,877           |
| 2007 | 3,641          | 4,057           |
| 2008 | 3,963          | 4,713           |
| 2009 | 3,290          | 4,502           |
| 2010 | 4,705          | 6,923           |

TABLE 2.1.2. Estimated weight of a 635 mm (25 in) rainbow trout at the Ganaraska River fishway at Port Hope, Ontario during spring, 1974-2010.

|         | Male       |             | Female     |             |      |            |       |    |
|---------|------------|-------------|------------|-------------|------|------------|-------|----|
| Year    | Weight (g) | Sample size | Weight (g) | Sample size |      | Wounds per |       | Ma |
| 1974    | 3,069      | 173         | 3,214      | 231         | Year | fish       | fish  |    |
| 1975    | 2,971      | 183         | 3,070      | 279         | 1974 | 0.083      | 0.676 | 0  |
| 1976    | 3,171      | 411         | 3,326      | 588         | 1975 | 0.095      | 0.725 | 0  |
| 1977    | 2,978      | 635         | 3,166      | 979         | 1976 | 0.090      | 0.355 | 0  |
| 1978    | 3,183      | 255         | 3,341      | 512         | 1977 | 0.076      | 0.178 | 0  |
| 1979    | 3,221      | 344         | 3,337      | 626         | 1978 | 0.097      | 0.380 | 0  |
| 1981    | 3,176      | 252         | 3,360      | 468         | 1979 | 0.122      | 0.312 | 0  |
| 1983    | 2,879      | 308         | 3,032      | 132         | 1981 |            |       | 0  |
| 1984    |            |             | 3,178      | 120         | 1983 | 0.113      | 0.456 | 0  |
| 1985    | 3,171      | 410         | 3,205      | 154         | 1985 | 0.040      | 0.154 | 0  |
| 1987    | 2,643      | 66          | 3,046      | 74          | 1990 | 0.015      | 0.087 | 0  |
| 1990    | 2,868      | 259         | 3,071      | 197         | 1991 | 0.012      | 0.091 | 0  |
| 1991    | 2,851      | 126         | 3,087      | 289         | 1992 | 0.035      | 0.162 | 0  |
| 1992    | 2,998      | 138         | 3,113      | 165         | 1993 | 0.034      | 0.165 | 0  |
| 1993    | 2,952      | 84          | 3,135      | 166         | 1994 | 0.027      | 0.156 | 0  |
| 1994    | 3,247      | 109         | 3,357      | 178         | 1995 | 0.017      | 0.046 | 0  |
| 1995    | 2,960      | 146         | 3,077      | 154         | 1996 | 0.023      | 0.030 | 0  |
| 1997    | 3,143      | 140         | 3,269      | 127         | 1997 | 0.017      | 0.158 | 0  |
| 1998    | 3,035      | 96          | 3,195      | 222         | 1998 | 0.035      | 0.162 | 0  |
| 1999    | 3,063      | 173         | 3,226      | 290         | 1999 | 0.015      | 0.199 | 0  |
| 2000    | 3,120      | 121         | 3,241      | 226         | 2000 | 0.005      | 0.272 | 0  |
| 2001    | 2,919      | 295         | 3,040      | 290         | 2001 | 0.028      | 0.229 | 0  |
| 2003    | 3,034      | 92          | 3,151      | 144         | 2003 | 0.017      | 0.176 | 0  |
| 2004    | 3,054      | 143         | 3,184      | 248         | 2004 | 0.079      | 0.464 | 0  |
| 2005    | 2,985      | 142         | 3,109      | 173         | 2005 | 0.084      | 0.579 | 0  |
| 2006    | 3,024      | 101         | 3,137      | 217         | 2006 | 0.088      | 0.577 | 0  |
| 2007    | 2,922      | 75          | 3,006      | 132         | 2007 | 0.068      | 0.665 | 0  |
| 2008    | 2,889      | 125         | 3,012      | 148         | 2008 | 0.113      | 0.843 | 0  |
| 2009    | 2,905      | 74          | 3,017      | 209         | 2009 | 0.142      | 0.491 | 0  |
| 2010    | 3,072      | 72          | 3,139      | 156         | 2010 | 0.048      | 0.481 | 0  |
| Average | 3,017      |             | 3,161      |             |      |            |       |    |

TABLE 2.1.3. Lamprey marks on rainbow trout in spring, 1974-2010, at the Ganaraska River fishway, in Port Hope, Ontario. Since 1990, A1 and A2 marks<sup>1</sup> were called wounds and the remainder of marks was called scars to fit with historical classification.

| Year | Wounds per<br>fish | Scars per<br>fish | Marks per<br>fish | % with wounds | % with scars | % with<br>marks | N    |
|------|--------------------|-------------------|-------------------|---------------|--------------|-----------------|------|
| 1974 | 0.083              | 0.676             | 0.759             | 7.0           | 33.2         | 36.8            | 527  |
| 1975 | 0.095              | 0.725             | 0.820             | 8.0           | 37.2         | 40.2            | 599  |
| 1976 | 0.090              | 0.355             | 0.445             | 6.6           | 23.3         | 28.1            | 1280 |
| 1977 | 0.076              | 0.178             | 0.254             | 6.4           | 13.5         | 18.2            | 2242 |
| 1978 | 0.097              | 0.380             | 0.476             | 8.1           | 28.4         | 33.7            | 2722 |
| 1979 | 0.122              | 0.312             | 0.434             | 10.3          | 22.8         | 29.8            | 3926 |
| 1981 |                    |                   | 0.516             |               |              | 36.2            | 5489 |
| 1983 | 0.113              | 0.456             | 0.569             | 9.7           | 33.4         | 38.8            | 833  |
| 1985 | 0.040              | 0.154             | 0.193             | 3.7           | 11.5         | 14.5            | 125  |
| 1990 | 0.015              | 0.087             | 0.102             | 0.0           | 0.1          | 0.1             | 470  |
| 1991 | 0.012              | 0.091             | 0.103             | 1.2           | 7.4          | 8.4             | 419  |
| 1992 | 0.035              | 0.162             | 0.197             | 2.9           | 14.3         | 16.5            | 315  |
| 1993 | 0.034              | 0.165             | 0.199             | 3.1           | 15.3         | 17.2            | 261  |
| 1994 | 0.027              | 0.156             | 0.183             | 0.0           | 0.1          | 0.2             | 301  |
| 1995 | 0.017              | 0.046             | 0.063             | 1.7           | 4.3          | 5.9             | 303  |
| 1996 | 0.023              | 0.030             | 0.053             | 2.3           | 3.0          | 5.3             | 397  |
| 1997 | 0.017              | 0.158             | 0.175             | 1.7           | 12.7         | 13.7            | 291  |
| 1998 | 0.035              | 0.162             | 0.197             | 0.0           | 0.1          | 0.2             | 340  |
| 1999 | 0.015              | 0.199             | 0.214             | 0.0           | 0.2          | 0.2             | 477  |
| 2000 | 0.005              | 0.272             | 0.278             | 0.5           | 23.2         | 23.5            | 371  |
| 2001 | 0.028              | 0.229             | 0.257             | 2.5           | 17.8         | 18.8            | 608  |
| 2003 | 0.017              | 0.176             | 0.193             | 1.7           | 14.3         | 15.1            | 238  |
| 2004 | 0.079              | 0.464             | 0.543             | 6.9           | 33.7         | 37.5            | 392  |
| 2005 | 0.084              | 0.579             | 0.664             | 6.9           | 39.6         | 41.4            | 321  |
| 2006 | 0.088              | 0.577             | 0.665             | 6.9           | 40.1         | 44.5            | 319  |
| 2007 | 0.068              | 0.665             | 0.733             | 5.3           | 46.6         | 49.0            | 206  |
| 2008 | 0.113              | 0.843             | 0.956             | 8.8           | 48.5         | 51.5            | 274  |
| 2009 | 0.142              | 0.491             | 0.633             | 12.5          | 36.3         | 42.2            | 289  |
| 2010 | 0.048              | 0.481             | 0.528             | 3.0           | 36.4         | 38.1            | 231  |

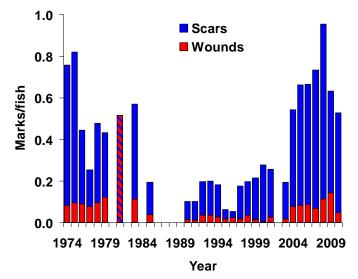



FIG. 2.1.2. Lamprey mark trends on rainbow trout in spring, 1974-2010, at the Ganaraska River fishway, in Port Hope, Ontario. Since 1990, A1 and A2 marks<sup>1</sup> were called wounds and the remainder of marks were called scars to fit with historical classification. Scars and wounds were combined in 1981.

|      |       |       |       | Mark  | s/fish |       |       |       |
|------|-------|-------|-------|-------|--------|-------|-------|-------|
| Year | A1    | A2    | A3    | A4    | B1     | B2    | B3    | B4    |
| 1990 | 0.000 | 0.015 | 0.009 | 0.009 | 0.000  | 0.002 | 0.017 | 0.051 |
| 1991 | 0.000 | 0.012 | 0.012 | 0.002 | 0.029  | 0.010 | 0.019 | 0.019 |
| 1992 | 0.013 | 0.022 | 0.025 | 0.019 | 0.079  | 0.006 | 0.010 | 0.022 |
| 1993 | 0.011 | 0.023 | 0.019 | 0.023 | 0.061  | 0.000 | 0.008 | 0.054 |
| 1994 | 0.007 | 0.020 | 0.010 | 0.007 | 0.076  | 0.010 | 0.010 | 0.043 |
| 1995 | 0.007 | 0.010 | 0.017 | 0.003 | 0.000  | 0.000 | 0.020 | 0.007 |
| 1996 | 0.013 | 0.010 | 0.003 | 0.003 | 0.005  | 0.013 | 0.000 | 0.008 |
| 1997 | 0.003 | 0.014 | 0.021 | 0.000 | 0.000  | 0.021 | 0.017 | 0.100 |
| 1998 | 0.012 | 0.024 | 0.012 | 0.041 | 0.012  | 0.003 | 0.015 | 0.079 |
| 1999 | 0.000 | 0.013 | 0.023 | 0.021 | 0.010  | 0.023 | 0.019 | 0.105 |
| 2000 | 0.000 | 0.005 | 0.027 | 0.057 | 0.000  | 0.003 | 0.003 | 0.183 |
| 2001 | 0.002 | 0.026 | 0.021 | 0.069 | 0.000  | 0.000 | 0.002 | 0.137 |
| 2003 | 0.000 | 0.013 | 0.021 | 0.029 | 0.000  | 0.008 | 0.004 | 0.118 |
| 2004 | 0.020 | 0.059 | 0.084 | 0.064 | 0.186  | 0.005 | 0.031 | 0.094 |
| 2005 | 0.016 | 0.069 | 0.075 | 0.072 | 0.315  | 0.003 | 0.040 | 0.075 |
| 2006 | 0.028 | 0.060 | 0.147 | 0.050 | 0.150  | 0.031 | 0.047 | 0.150 |
| 2007 | 0.010 | 0.058 | 0.087 | 0.044 | 0.432  | 0.000 | 0.034 | 0.068 |
| 2008 | 0.022 | 0.091 | 0.142 | 0.018 | 0.380  | 0.015 | 0.161 | 0.128 |
| 2009 | 0.087 | 0.055 | 0.073 | 0.042 | 0.225  | 0.010 | 0.017 | 0.125 |
| 2010 | 0.026 | 0.022 | 0.061 | 0.026 | 0.242  | 0.004 | 0.039 | 0.104 |

TABLE 2.1.4. Classification of lamprey marks<sup>1</sup> on rainbow trout in spring, 1990-2010, at the Ganaraska River fishway, in Port Hope, Ontario.

# **2.2 Eastern Lake Ontario and Bay of Quinte Fish Community Index Gillnetting**

Bottom set gillnets have been used at fixed index netting sites (Fig. 2.2.1) in eastern Lake Ontario (ranging in depth from 2.5-140 m) and the Bay of Quinte (ranging in depth from 5-45 m) annually beginning with the Hay Bay site, in the Bay of Quinte, in 1958. Gillnets are multi-paneled with mesh sizes ranging from  $1\frac{1}{2}$ -6 inch ( $\frac{1}{2}$  inch increments) stretched mesh. Monofilament mesh replaced multifilament in 1992. The gillnetting program is used to monitor the abundance of a variety of warm, cool and cold-water

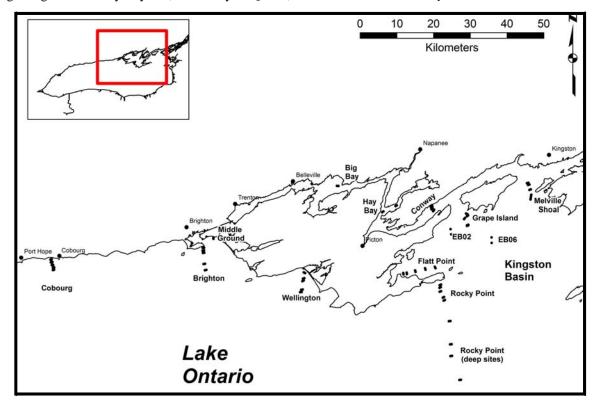



FIG. 2.2.1. Map of northeastern Lake Ontario. Shown are eastern Lake Ontario and Bay of Quinte fish community index gillnetting sites.

Species-specific catches in the gillnetting program are shown by geographic region in Tables 2.2.1-2.2.8 for 1992-2010. Each gillnet catch was standardized to represent the total number of fish in 100 m of each mesh size and summed across the ten mesh sizes from 1<sup>1</sup>/<sub>2</sub>-6 inch. Twenty-five different species and over thirty-four thousand individual fish were caught in 2010. About 89% of the catch was alewife.

Some biological information is also presented below for selected species including lake whitefish, walleye, round goby, lake herring and lake trout.

#### Lake Ontario

#### Cobourg

Ten species were caught at Cobourg in 2010. The most abundant species was alewife. Coldwater species, including Chinook salmon, rainbow trout, brown trout, lake trout and round whitefish figured prominently in the catch (Table 2.2.1).

TABLE 2.2.1. Species-specific catch per gillnet set at Cobourg, Lake Ontario, 2010. June and August catches are averages for 2 gillnet gangs set at each of 5 depths (range 7.5-27.5 m) during each of 2 (June) of 1 (August) visits. The total number of species caught and gillnets set each month are indicated.

|                   | Month   |        |  |  |  |
|-------------------|---------|--------|--|--|--|
| Species           | June    | August |  |  |  |
| Alewife           | 3,206.4 | 533.8  |  |  |  |
| Chinook salmon    | 0.7     | 12.0   |  |  |  |
| Rainbow trout     | -       | 10.1   |  |  |  |
| Brown trout       | -       | 2.6    |  |  |  |
| Lake trout        | 3.6     | -      |  |  |  |
| Round whitefish   | 0.3     | 0.7    |  |  |  |
| White sucker      | -       | 2.0    |  |  |  |
| Yellow perch      | 1.1     | 4.3    |  |  |  |
| Walleye           | -       | 0.7    |  |  |  |
| Round goby        | 16.3    | 10.9   |  |  |  |
| Total catch       | 3,228   | 577    |  |  |  |
| Number of species | 6       | 9      |  |  |  |
| Number of sets    | 20      | 10     |  |  |  |

#### Middle Ground

Eight species were caught at Middle Ground in 2010. The most abundant species were yellow perch, white

TABLE 2.2.2. Species-specific catch per gillnet set at **Middle Ground**, 1992-2010. Annual catches are averages for 1-3 gillnet gangs set at a single depth (5 m) during each of 2-3 visits to a single site (Middle Ground). The number of species caught and gillnets set each year are indicated.

|                   |           |       |       |       |       | Ye    | ar    |       |       |       |      |           |
|-------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----------|
|                   | 1992-2000 |       |       |       |       |       |       |       |       |       |      | 2001-2010 |
| Species           | mean      | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010 | mean      |
| Longnose gar      | -         | -     | -     | 1.6   | -     | -     | -     | -     | -     | -     | -    | 0.2       |
| Alewife           | 23.7      | 5.4   | 5.4   | -     | -     | -     | -     | -     | 5.4   | 54.3  | 21.7 | 16.5      |
| Gizzard shad      | 2.6       | -     | -     | -     | -     | 3.3   | -     | 1.6   | -     | -     | 1.6  | 1.6       |
| Brown trout       | 0.7       | -     | -     | -     | -     | -     | 1.6   | -     | 1.6   | 3.3   | 1.6  | 0.8       |
| Lake trout        | 5.9       | -     | -     | -     | -     | -     | 1.6   | -     | -     | -     | -    | 3.0       |
| Northern pike     | 2.3       | -     | -     | 3.3   | -     | 1.6   | 1.6   | 9.9   | 6.6   | 8.2   | 1.6  | 2.8       |
| White sucker      | 9.2       | 9.9   | 20.2  | -     | 13.7  | 4.9   | 8.2   | 26.3  | 14.8  | 6.6   | 38.3 | 11.7      |
| Common carp       | 2.7       | 3.3   | -     | 4.9   | 3.3   | -     | -     | -     | -     | -     | -    | 1.9       |
| Brown bullhead    | 9.3       | 13.2  | 3.3   | 14.2  | 1.6   | 10.4  | 5.4   | 4.9   | 1.6   | -     | -    | 7.4       |
| White perch       | 0.5       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -    | 0.3       |
| Rock bass         | 9.7       | 7.1   | 1.6   | 3.3   | 4.9   | 3.3   | -     | 7.1   | -     | -     | 1.6  | 6.3       |
| Pumpkinseed       | 1.2       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -    | 0.6       |
| Bluegill          | 0.4       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -    | 0.2       |
| Smallmouth bass   | 0.1       | -     | -     | -     | 1.6   | -     | -     | 1.6   | -     | -     | -    | 0.2       |
| Largemouth bass   | 0.4       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -    | 0.2       |
| Yellow perch      | 372.9     | 285.4 | 400.7 | 170.1 | 448.2 | 193.0 | 695.6 | 192.5 | 291.8 | 149.0 | 89.7 | 332.3     |
| Walleye           | 16.0      | 1.6   | 3.3   | 6.6   | 3.3   | 4.9   | 8.2   | 23.0  | 4.9   | 4.9   | 1.6  | 11.1      |
| Freshwater drum   | 3.8       | -     | 1.6   | -     | 19.7  | 1.6   | -     | 3.3   | -     | 3.3   | -    | 3.4       |
| Total catch       | 461       | 326   | 436   | 204   | 496   | 223   | 722   | 270   | 327   | 230   | 158  | 400       |
| Number of species | 8         | 7     | 7     | 7     | 8     | 8     | 7     | 9     | 7     | 7     | 8    | 8         |
| Number of sets    |           | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4    |           |

TABLE 2.2.3. Species-specific catch per gillnet set in **Northeastern Lake Ontario**, 1992-2010. Annual catches are averages for 1-3 gillnet gangs set at each of 5 depths (range 7.5-27.5 m) during each of 2-3 visits to each of 3 sites (Brighton, Wellington and Rocky Point shallow sites). The total number of species caught and gillnets set each year are indicated.

|                      |                   |       |       |       |       |       | Year  |       |       |         |         |                   |
|----------------------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------------------|
| Species              | 1992-2000<br>mean | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009    | 2010    | 2001-2010<br>mean |
| Alewife              | 423.0             | 385.6 | 657.0 | 396.9 | 474.0 | 916.2 | 773.4 | 307.9 | 877.1 | 1,829.3 | 2,073.0 | 869.0             |
| Gizzard shad         | 1.0               | -     | -     | -     | -     | -     | -     | -     | -     | -       | 0.3     | 0.0               |
| Coho salmon          | 0.0               | -     | -     | -     | -     | -     | -     | -     | -     | -       | -       | -                 |
| Chinook salmon       | 2.7               | 0.4   | 1.4   | 4.1   | 4.8   | 1.5   | 1.5   | 2.3   | 2.0   | 0.1     | 3.3     | 2.1               |
| Rainbow trout        | -                 | -     | -     | -     | -     | -     | 0.1   | -     | -     | -       | 0.1     | 0.0               |
| Atlantic salmon      | 0.0               | -     | -     | -     | -     | -     | -     | -     | -     | -       | -       | -                 |
| Brown trout          | 0.7               | 0.3   | 3.3   | 1.2   | 1.9   | 1.0   | 1.3   | 0.7   | 2.6   | 1.3     | 7.9     | 2.1               |
| Lake trout           | 40.4              | 11.8  | 8.9   | 3.0   | 7.5   | 1.3   | 3.2   | 1.1   | 0.7   | 0.8     | 1.1     | 3.9               |
| Lake whitefish       | 3.8               | 0.4   | 0.1   | 0.8   | 0.2   | 0.1   | 0.2   | 0.1   | 0.5   | 1.0     | -       | 0.4               |
| Cisco (Lake herring) | 0.6               | -     | -     | 0.1   | -     | 0.2   | 0.3   | 0.1   | 0.5   | 0.2     | 0.1     | 0.2               |
| Round whitefish      | 2.7               | -     | 0.5   | 0.1   | 0.1   | -     | -     | -     | -     | -       | -       | 0.1               |
| Chub                 | -                 | 0.4   | -     | -     | -     | -     | -     | -     | -     | -       | -       | 0.0               |
| Rainbow smelt        | 0.5               | -     | -     | -     | -     | -     | -     | -     | 0.5   | 0.2     | 0.6     | 0.1               |
| Northern pike        | 0.2               | -     | -     | 0.2   | -     | 0.2   | -     | 0.4   | 0.1   | 0.1     | -       | 0.1               |
| White sucker         | 1.0               | 0.1   | 0.2   | -     | 0.5   | 0.3   | 0.1   | 0.4   | -     | -       | 0.1     | 0.2               |
| Greater redhorse     | -                 | -     | -     | 0.1   | -     | -     | -     | -     | -     | -       | -       | 0.0               |
| Lake chub            | 0.3               | -     | 0.4   | -     | -     | -     | -     | 0.1   | -     | -       | -       | 0.0               |
| Common carp          | 0.3               | -     | -     | 0.1   | 0.2   | 0.2   | -     | -     | -     | -       | -       | 0.1               |
| Brown bullhead       | 0.2               | 1.2   | 0.7   | 1.9   | 0.8   | 1.1   | -     | 0.5   | 0.5   | 0.1     | -       | 0.7               |
| Channel catfish      | 0.0               | -     | -     | -     | -     | -     | -     | -     | -     | 0.1     | -       | 0.0               |
| Stonecat             | 0.0               | 1.5   | 0.4   | 0.1   | -     | 0.2   | 0.1   | 0.6   | -     | -       | -       | 0.3               |
| American eel         | 0.0               | -     | -     | -     | -     | -     | -     | -     | -     | -       | -       | -                 |
| Burbot               | 1.3               | 0.7   | 1.3   | 0.3   | 0.2   | 0.7   | 0.3   | 0.1   | 0.1   | -       | 0.2     | 0.4               |
| White perch          | 0.1               | -     | -     | -     | -     | -     | -     | -     | -     | -       | -       | -                 |
| Rock bass            | 3.3               | 1.1   | 1.9   | 4.4   | 2.0   | 1.6   | 1.5   | 2.1   | 4.9   | 1.4     | 2.6     | 2.3               |
| Pumpkinseed          | 0.0               | -     | -     | -     | -     | -     | -     | -     | -     | -       | -       | -                 |
| Smallmouth bass      | 2.7               | 1.5   | 1.4   | 1.5   | 1.7   | 0.9   | 0.9   | 1.1   | 1.2   | 0.3     | 1.2     | 1.2               |
| Yellow perch         | 96.5              | 27.8  | 14.7  | 40.5  | 23.3  | 34.7  | 24.2  | 56.9  | 49.8  | 57.8    | 35.1    | 36.5              |
| Walleye              | 3.3               | -     | 1.1   | 1.2   | 3.4   | 4.4   | 1.8   | 3.7   | 1.6   | 0.3     | 1.3     | 1.9               |
| Round goby           | -                 | -     | -     | 1.1   | 2.5   | 71.3  | 63.3  | 162.1 | 49.8  | 67.4    | 52.3    | 47.0              |
| Freshwater drum      | 1.4               | 0.2   | 0.2   | 0.4   | 1.0   | 0.1   | 0.3   | 0.1   | 0.4   | 0.3     | 0.3     | 0.4               |
| Total catch          | 586               | 433   | 693   | 458   | 524   | 1,036 | 873   | 540   | 992   | 1,961   | 2,180   | 969               |
| Number of species    | 17                | 14    | 16    | 19    | 16    | 18    | 16    | 18    | 17    | 16      | 16      | 17                |
| Number of sets       |                   | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60      | 60      |                   |

sucker and alewife (Table 2.2.2). Other species caught included gizzard shad, brown trout, northern pike, rock bass and walleye. Yellow perch catches were the lowest on record at Middle Ground. Alewife, a species that was moderately abundant in the early to mid-1990s but not been caught from 2003-2007, reappeared in 2008 and, in 2009 and 2010, returned to the early 1990 levels of abundance.

Northeast (Brighton, Wellington and Rocky Point shallow sites)

Sixteen species were caught in the Northeast Lake Ontario gillnets in 2010. The most abundant species were alewife, round goby, yellow perch, and brown trout (Table 2.2.3). Of these species, alewife, and brown trout were more abundant in 2010 than the 2009 average while round goby and yellow perch were less abundant. The cold-water benthic species, lake trout, lake whitefish and round whitefish, declined markedly over the 1992-2010 time-period. Round goby, caught for the first time in 2003 is now, along with alewife and yellow perch, one of the most abundant species in the northeast region.

#### Rocky Point—Deep Sites

Netting operations were not completed at the Rocky Point deep sites in 2010 because our vessel was not compliant with Transport Canada Regulations; the sites were too far offshore. With our new vessel, this issue will be resolved for 2011.

TABLE 2.2.4. Species-specific catch per gillnet set in the **Kingston Basin Lake Ontario** (nearshore sites), 1992-2010. Annual catches are averages for 1-3 gillnet gangs set at each of 5 depths (range 7.5-27.5 m) during each of 2-3 visits to each of 3 sites (Flatt Point, Grape Island and Melville Shoal). The total number of species caught and gillnets set each year are indicated.

|                        |           |       |       |       |       |         | Year    |       |         |         |         |           |
|------------------------|-----------|-------|-------|-------|-------|---------|---------|-------|---------|---------|---------|-----------|
|                        | 1992-2000 |       |       |       |       |         |         |       |         |         |         | 2001-2010 |
| Species                | mean      | 2001  | 2002  | 2003  | 2004  | 2005    | 2006    | 2007  | 2008    | 2009    | 2010    | mean      |
| Lake sturgeon          | 0.1       | 0.1   | -     | 0.2   | -     | -       | -       | -     | -       | -       | -       | 0.0       |
| Alewife                | 574.1     | 530.6 | 130.3 | 151.0 | 497.0 | 1,195.1 | 1,700.5 | 825.8 | 1,734.7 | 2,295.7 | 4,301.7 | 1,336.2   |
| Gizzard shad           | 0.0       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| Chinook salmon         | 0.5       | -     | -     | -     | 0.8   | 0.4     | -       | 0.4   | -       | -       | 0.1     | 0.2       |
| Rainbow trout          | -         | -     | -     | -     | -     | -       | -       | 0.1   | -       | -       | -       | 0.0       |
| Brown trout            | 0.1       | 0.2   | -     | -     | 0.1   | 0.1     | 0.5     | -     | 0.4     | 0.1     | 0.7     | 0.2       |
| Lake trout             | 47.5      | 6.3   | 3.0   | 3.8   | 2.5   | 2.3     | 1.1     | 4.0   | 2.6     | 6.3     | 3.0     | 3.5       |
| Lake whitefish         | 18.9      | 10.7  | 6.8   | 2.9   | 6.1   | 1.4     | 0.7     | 3.4   | 1.9     | 0.5     | 0.8     | 3.5       |
| Cisco (Lake herring)   | 2.4       | -     | -     | 0.2   | -     | 0.1     | -       | -     | -       | -       | 0.8     | 0.1       |
| Round whitefish        | 0.0       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| Coregonus sp.          | 0.1       | 0.1   | -     | -     | -     | -       | -       | -     | -       | -       | -       | 0.0       |
| Rainbow smelt          | 0.7       | -     | -     | -     | -     | -       | 0.1     | -     | 0.5     | 0.1     | 0.3     | 0.1       |
| Northern pike          | 0.3       | 0.4   | 0.2   | 0.1   | 0.1   | 0.3     | 0.1     | 0.2   | 0.8     | 0.5     | 0.4     | 0.3       |
| White sucker           | 2.4       | 1.1   | 1.0   | 1.8   | 2.2   | 1.3     | 0.8     | 0.5   | 1.2     | 0.1     | 0.4     | 1.0       |
| Silver redhorse        | 0.0       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| Greater redhorse       | 0.0       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| Moxostoma sp.          | 0.1       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| Common carp            | 0.0       | -     | -     | 0.1   | 0.2   | -       | -       | -     | 0.1     | -       | -       | 0.0       |
| Brown bullhead         | 0.1       | -     | 0.1   | 0.4   | 0.5   | 0.1     | 0.1     | 0.1   | -       | -       | -       | 0.1       |
| Channel catfish        | 0.4       | -     | -     | 0.2   | -     | -       | -       | -     | -       | -       | -       | 0.0       |
| Stonecat               | 0.2       | 0.8   | 1.4   | 0.9   | 0.7   | 1.1     | -       | -     | -       | -       | -       | 0.5       |
| Burbot                 | 0.6       | 0.2   | 0.2   | 0.1   | 0.1   | -       | -       | -     | -       | -       | -       | 0.1       |
| Threespine stickleback | 0.1       | -     | -     | -     | -     | -       | -       | -     | -       | -       | -       | -         |
| White perch            | 0.6       | -     | -     | 0.4   | 0.2   | 0.1     | -       | -     | -       | -       | -       | 0.1       |
| Rock bass              | 9.1       | 7.7   | 2.4   | 4.6   | 6.1   | 4.4     | 6.3     | 6.4   | 9.7     | 2.8     | 3.6     | 5.4       |
| Pumpkinseed            | -         | 0.4   | -     | -     | -     | -       | -       | -     | -       | -       | -       | 0.0       |
| Smallmouth bass        | 2.8       | 1.2   | 1.8   | 2.0   | 1.6   | 0.4     | 1.6     | 1.6   | 2.3     | 1.2     | 1.9     | 1.6       |
| Yellow perch           | 146.9     | 46.8  | 112.5 | 103.9 | 298.5 | 127.5   | 250.7   | 164.7 | 71.1    | 47.8    | 98.8    | 132.2     |
| Walleye                | 25.7      | 11.3  | 8.8   | 9.4   | 11.9  | 10.3    | 17.2    | 17.2  | 12.5    | 17.1    | 30.2    | 14.6      |
| Round goby             | -         | -     | -     | 2.9   | 129.9 | 42.2    | 56.9    | 46.0  | 10.9    | 3.6     | 10.9    | 30.3      |
| Freshwater drum        | 0.9       | 0.2   | -     | 0.5   | -     | -       | 0.1     | 0.5   | 0.1     | -       | 0.3     | 0.2       |
| Total catch            | 834       | 618   | 268   | 286   | 959   | 1,387   | 2,037   | 1,071 | 1,849   | 2,376   | 4,454   | 1,530.4   |
| Number of species      | 16        | 16    | 12    | 19    | 17    | 16      | 14      | 14    | 14      | 12      | 15      | 15        |
| Number of sets         |           | 60    | 60    | 60    | 60    | 60      | 60      | 60    | 60      | 60      | 60      |           |

Kingston Basin—Nearshore Sites (Melville Shoal, Grape Island and Flatt Point)

Fifteen species were caught in Kingston Basin nearshore gillnets in 2010. The most abundant species were alewife, yellow perch, walleye, round goby and rock bass (Table 2.2.4). Alewife abundance has increased dramatically over the last three years.

#### Kingston Basin—Deep Sites (EB02 and EB06)

Ten species were caught in Kingston Basin deep gillnets in 2010. The most abundant species were alewife, lake trout and lake whitefish (Table 2.2.5). The catches of each of these species was higher, particularly for alewife, in 2010 than in 2009.

#### Bay of Quinte

#### **Big Bay**

Twelve species were caught in Big Bay gillnets in 2010. The most abundant species were yellow perch, white perch, walleye, bluegill, and longnose gar (Table 2.2.6). Of these species, white perch catches were similar to past years, yellow perch catches were lower and walleye catches were somewhat higher in 2010. Brown bullhead, which have shown a steady decrease in abundance since 2001, were absent from the 2010 catch. Round goby, first caught here in 2003, have not been caught since 2005.

TABLE 2.2.5. Species-specific catch per gillnet set in the **Kingston Basin Lake Ontario** (deep sites), 1992-2010. Annual catches are averages for 4-8 gillnet gangs set at a single depth (approx. 30 m) during each of 3 visits to each of 2 sites (EB02 and EB06). The total number of species caught and gillnets set each year are indicated.

|                      |                   |       |      |      |      | Ye   | ear  |      |      |      |       |                   |
|----------------------|-------------------|-------|------|------|------|------|------|------|------|------|-------|-------------------|
| Species              | 1992-2000<br>mean | 2001  | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010  | 2001-2010<br>mean |
| Sea lamprey          | 0.1               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| Lake sturgeon        | 0.1               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| Alewife              | 225.4             | 110.2 | 2.7  | 3.4  | 37.7 | 11.9 | 22.9 | 31.9 | 46.6 | 28.8 | 766.0 | 106.2             |
| Chinook salmon       | 0.2               | 0.8   | -    | 0.1  | 0.1  | 0.3  | -    | 0.1  | 0.1  | 0.4  | 0.3   | 0.2               |
| Rainbow trout        | -                 | -     | -    | -    | -    | -    | -    | 0.1  | -    | -    | -     | 0.0               |
| Atlantic salmon      | -                 | -     | -    | -    | -    | -    | -    | -    | 0.1  | -    | -     | 0.0               |
| Brown trout          | 0.1               | 0.3   | 0.3  | -    | -    | 0.1  | -    | 0.3  | 0.3  | 0.1  | 0.8   | 0.2               |
| Lake trout           | 139.9             | 10.4  | 10.1 | 11.8 | 12.1 | 8.1  | 13.0 | 15.5 | 22.9 | 17.4 | 21.7  | 14.3              |
| Lake whitefish       | 33.2              | 2.7   | 2.7  | 1.1  | 8.9  | 1.0  | 1.9  | 1.9  | 7.4  | 1.8  | 3.2   | 3.3               |
| Cisco (Lake herring) | 0.8               | -     | -    | -    | 0.1  | -    | -    | -    | -    | -    | 0.7   | 0.1               |
| Rainbow smelt        | 3.6               | -     | -    | -    | 0.1  | 0.1  | 0.4  | 0.1  | -    | 0.7  | 0.5   | 0.2               |
| Common carp          | -                 | -     | -    | -    | 0.1  | -    | -    | -    | -    | -    | -     | 0.0               |
| American eel         | 0.0               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| Burbot               | 0.6               | 0.8   | 0.3  | 0.1  | 0.1  | -    | -    | -    | -    | -    | -     | 0.1               |
| Trout-perch          | 0.0               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| White perch          | 0.1               | -     | -    | 0.1  | -    | -    | -    | -    | -    | -    | -     | 0.0               |
| Rock bass            | -                 | -     | -    | -    | -    | -    | -    | -    | -    | -    | 0.1   | 0.0               |
| Smallmouth bass      | -                 | -     | -    | -    | -    | -    | -    | -    | -    | 0.1  | -     | 0.0               |
| Yellow perch         | 0.3               | -     | 0.9  | 0.3  | 9.6  | 1.6  | 2.3  | 0.5  | 2.1  | 0.4  | 0.8   | 1.9               |
| Walleye              | 0.2               | -     | -    | -    | 0.1  | -    | 0.1  | -    | 0.1  | -    | -     | 0.0               |
| Round goby           | -                 | -     | -    | -    | 0.4  | 0.3  | 1.0  | 1.1  | -    | -    | 0.4   | 0.3               |
| Freshwater drum      | 0.0               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| Sculpin sp.          | 0.0               | -     | -    | -    | -    | -    | -    | -    | -    | -    | -     | -                 |
| Total catch          | 404               | 125   | 17   | 17   | 69   | 23   | 42   | 52   | 80   | 50   | 795   | 127               |
| Number of species    | 8                 | 6     | 6    | 7    | 11   | 8    | 7    | 9    | 8    | 8    | 10    | 8                 |
| Number of sets       |                   | 24    | 24   | 48   | 48   | 48   | 48   | 48   | 48   | 48   | 48    |                   |

#### Hay Bay

Nine species were caught in Hay Bay gillnets in 2010. The most abundant species were yellow perch, alewife, cisco (lake herring) and white sucker (Table 2.2.7). The catch of each of these species was greater than previous years. Brown bullhead were absent from the 2009 and 2010 catches. Round goby, having been caught each year from 2002-2005, were absent from the 2006-2010 catches.

#### Conway

Sixteen species were caught in Conway gillnets in 2010. The most abundant species were alewife, yellow perch, walleye, rock bass and freshwater drum (Table 2.2.8). Alewife catches were very high. Round goby, which were caught for the first time in 2002 and which had increased to a high abundance level by 2004, have subsequently declined to very low abundance levels.

#### Species Highlights

#### Lake Whitefish

Thirty-four lake whitefish were caught in the 2010 index gillnets. Fifteen were from the 2003 year-class and five were from 2008, the next most common yearclass. Age-7 fish averaged of 445 mm fork length, 1046 g in weight, and all females were mature (Table 2.2.9 and Fig. 2.2.2 and Fig. 2.2.3). Lake whitefish condition appears to have stabilized at a level lower than that observed in the early 1990s but significantly higher than that in 1996 and 1997 (Fig. 2.3.4).

#### Walleye

The age distribution of walleye (Table 2.2.10) showed a broad range of age-classes from age-1 to age-22. Generally speaking, during the summer index

|                   |           |         |         |       |       | Yea   | ar      |       |       |       |       |           |
|-------------------|-----------|---------|---------|-------|-------|-------|---------|-------|-------|-------|-------|-----------|
| с ·               | 1992-2000 | 2001    | 2002    | 2002  | 2004  | 2005  | 2006    | 2007  | 2000  | 2000  | 2010  | 2001-2010 |
| Species           | mean      | 2001    | 2002    | 2003  | 2004  | 2005  | 2006    | 2007  | 2008  | 2009  | 2010  | mean      |
| Lake sturgeon     | 0.1       | -       | -       | -     | -     | -     | -       | -     | -     | -     | -     | -         |
| Longnose gar      | 9.1       | 6.6     | 6.6     | 1.1   | 6.6   | 9.9   | 19.7    | 2.2   | 16.4  | 24.8  | 42.8  | 13.7      |
| Alewife           | 4.6       | -       | 5.8     | 11.0  | 20.8  | -     | 4.9     | -     | 6.6   | 17.5  | 6.6   | 7.3       |
| Gizzard shad      | 47.6      | 14.0    | 43.6    | 13.2  | 1.1   | 277.4 | 1.6     | 6.6   | 24.1  | -     | 21.9  | 40.4      |
| Northern pike     | 4.4       | 0.8     | 0.8     | -     | 1.1   | 1.1   | 3.3     | 1.1   | -     | -     | -     | 0.8       |
| Mooneye           | 0.2       | -       | -       | -     | -     | -     | -       | -     | -     | -     | -     | -         |
| White sucker      | 48.0      | 23.0    | 60.9    | 15.4  | 35.1  | 16.4  | 32.9    | 16.4  | 28.5  | 21.9  | 24.1  | 27.5      |
| Silver redhorse   | -         | -       | -       | -     | -     | -     | -       | -     | -     | -     | 1.1   | 0.1       |
| Moxostoma sp.     | 0.2       | 0.8     | -       | 1.1   | -     | -     | -       | -     | -     | -     | -     | 0.2       |
| Common carp       | 1.9       | -       | -       | 1.1   | 1.1   | -     | -       | -     | -     | -     | -     | 0.2       |
| Brown bullhead    | 44.2      | 44.4    | 36.2    | 12.1  | 15.4  | 5.5   | 13.2    | 5.5   | 4.4   | 4.4   | -     | 14.1      |
| Channel catfish   | 2.4       | -       | 0.8     | -     | 1.1   | -     | 1.6     | -     | -     | 1.1   | -     | 0.5       |
| Burbot            | 0.2       | -       | -       | -     | -     | -     | -       | -     | -     | -     | -     | -         |
| White perch       | 592.9     | 144.7   | 239.3   | 393.6 | 858.6 | 523.0 | 1,294.4 | 782.9 | 838.8 | 810.3 | 605.3 | 649.1     |
| White bass        | 0.5       | -       | 0.8     | -     | -     | -     | -       | 1.1   | 1.1   | -     | -     | 0.3       |
| Rock bass         | 1.7       | -       | -       | -     | -     | 1.1   | -       | -     | -     | -     | -     | 0.1       |
| Pumpkinseed       | 26.1      | 111.8   | 54.3    | 5.5   | 28.5  | 2.2   | 21.4    | 3.3   | 6.6   | 4.4   | 1.1   | 23.9      |
| Bluegill          | 3.8       | 46.9    | 24.7    | 3.3   | 2.2   | 16.4  | 42.8    | 35.1  | 20.8  | 36.5  | 43.9  | 27.3      |
| Smallmouth bass   | 7.3       | 3.3     | -       | -     | -     | -     | 3.3     | -     | -     | 1.1   | -     | 0.8       |
| Largemouth bass   | 0.1       | -       | -       | -     | -     | -     | 1.6     | -     | -     | -     | 1.1   | 0.3       |
| Black crappie     | 0.7       | 1.6     | 2.5     | 2.2   | 1.1   | 1.1   | 14.8    | 6.6   | 2.2   | -     | -     | 3.2       |
| Yellow perch      | 912.2     | 1,254.1 | 1,203.1 | 758.8 | 721.5 | 677.6 | 782.9   | 108.6 | 414.5 | 852.3 | 284.0 | 705.7     |
| Walleye           | 111.1     | 29.6    | 50.2    | 42.8  | 52.6  | 38.4  | 70.7    | 35.1  | 60.3  | 52.6  | 71.3  | 50.4      |
| Round goby        | -         | -       | -       | 2.2   | 2.2   | 3.3   | -       | -     | -     | -     | -     | 0.8       |
| Freshwater drum   | 102.0     | 139.8   | 48.5    | 48.2  | 48.2  | 62.5  | 129.9   | 74.6  | 42.8  | 57.0  | 31.8  | 68.3      |
| Total catch       | 1,922     | 1,822   | 1,778   | 1,311 | 1,797 | 1,636 | 2,439   | 1,079 | 1,467 | 1,884 | 1,135 | 1,635     |
| Number of species | 14        | 14      | 15      | 15    | 16    | 14    | 16      | 13    | 13    | 12    | 12    | 14        |
| Number of sets    |           | 8       | 8       | 6     | 6     | 6     | 4       | 6     | 6     | 6     | 6     |           |

TABLE 2.2.6. Species-specific catch per gillnet set at **Big Bay, Bay of Quinte**, 1992-2010. Annual catches are averages for 2-4 gillnet gangs set at a single depth (5 m) during each of 2-4 visits (summer). The total number of species caught and gillnets set each year are indicated.

gillnetting program young walleye were found in the Bay of Quinte (e.g., age-1 to age-5 fish comprised 92% of the Bay of Quinte walleye catch) while older walleye were present in eastern Lake Ontario (e.g., age-6 and older fish comprised 86% of the catches in the Kingston Basin). Among young walleye, all ages were quite common indicating that year-class strength has been relatively strong and consistent in recent years. Older walleye, from many strong year-classes, were also abundant in eastern Lake Ontario. The 2003 year-class appears particularly strong in Lake Ontario. Female walleye begin to mature for the first time during the summer at age-4 to presumably spawn the following spring at age-5.

#### Round Goby

Only large round goby are susceptible to capture in assessments gillnets. Round goby first appeared in assessment gillnets in the northeast and Bay of Quinte in 2002, Kingston Basin nearshore sites in 2003 (depth range 7.5 to 27.5 m), and in Kingston Basin deep sites (depth about 30 m) in 2004. No round goby were captured to date at Middle Ground or the Rocky Point deep sites. In the Bay of Quinte, round goby abundance initially increased, peaked in 2004, and then decreased substantially. In Lake Ontario, goby abundance increased until 2007, declined in 2008 and remained stable in 2009 and 2010.

#### Lake Herring

The age distribution of lake herring caught in the 2010 index gillnets is shown in Table 2.2.11. The 2003, 2006 and 2007 year-classes are all relatively common.

#### Lake Trout

The abundance of adult lake trout remains low, but there are signs of improvement in recent years (Fig. 2.2.5). The recent low levels were reached around the year 2002, after a period of decline that began in the

TABLE 2.2.7. Species-specific catch per gillnet set at **Hay Bay, Bay of Quinte**, 1992-2010. Annual catches are averages for 1-3 gillnet gangs set at each of 2 depths (7.5 and 12.5 m) during each of 1-2 visits (summer). The total number of species caught and gillnets set each year are indicated.

|                      |           |       |       |       |       | Y     | ear   |       |       |       |         |           |
|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-----------|
|                      | 1992-2000 |       |       |       |       |       |       |       |       |       |         | 2001-2010 |
| Species              | mean      | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010    | mean      |
| Sea lamprey          | -         | -     | -     | -     | -     | -     | -     | -     | 0.8   | -     | -       | 0.1       |
| Lake sturgeon        | 0.1       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -       | -         |
| Longnose gar         | -         | -     | -     | -     | -     | -     | -     | 0.8   | -     | -     | -       | 0.1       |
| Alewife              | 54.8      | 126.6 | 53.5  | -     | 8.2   | 1.6   | 49.3  | 24.7  | 0.8   | 64.1  | 189.1   | 51.8      |
| Gizzard shad         | 4.7       | -     | 1.6   | -     | -     | -     | 3.3   | 0.8   | 0.8   | -     | -       | 0.7       |
| Chinook salmon       | 0.2       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -       | -         |
| Brown trout          | 0.1       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -       | -         |
| Lake trout           | 0.8       | -     | -     | 1.6   | -     | -     | -     | -     | -     | -     | -       | 0.2       |
| Lake whitefish       | 0.4       | 0.8   | -     | -     | -     | -     | -     | -     | -     | -     | -       | 0.1       |
| Cisco (Lake herring) | 24.9      | 6.6   | 0.8   | -     | 0.8   | -     | -     | 0.8   | -     | 0.8   | 67.4    | 7.7       |
| Coregonus sp.        | 0.3       | -     | -     | -     | -     | -     | -     | -     | 0.8   | -     | -       | 0.1       |
| Rainbow smelt        | 1.2       | -     | 1.6   | -     | -     | -     | 0.8   | -     | -     | 2.5   | -       | 0.5       |
| Northern pike        | 6.6       | 5.8   | 0.8   | 2.5   | -     | 3.3   | 2.5   | 7.4   | 6.6   | 3.3   | 19.7    | 5.2       |
| White sucker         | 40.2      | 37.0  | 18.9  | 14.8  | 40.3  | 9.9   | 11.5  | 9.0   | 16.4  | 28.0  | 57.6    | 24.3      |
| River redhorse       | -         | -     | -     | -     | -     | -     | -     | 0.8   | -     | -     | -       | 0.1       |
| Common carp          | 1.5       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -       | -         |
| Spottail shiner      | 0.1       | -     | -     | -     | -     | -     | -     | 0.8   | -     | -     | -       | 0.1       |
| Brown bullhead       | 6.2       | 5.8   | 0.8   | 1.6   | 1.6   | 2.5   | 5.8   | 2.5   | 3.3   | -     | -       | 2.4       |
| Channel catfish      | 0.1       | -     | -     | 0.8   | 0.8   | -     | -     | -     | -     | -     | -       | 0.2       |
| Burbot               | 0.3       | -     | -     | -     | -     | -     | -     | -     | -     | -     | -       | -         |
| White perch          | 72.3      | 3.3   | 35.4  | 55.1  | 95.4  | 0.8   | 198.2 | 106.9 | 136.5 | 61.7  | 11.5    | 70.5      |
| Rock bass            | 0.2       | -     | -     | -     | -     | -     | -     | -     | 0.8   | -     | -       | 0.1       |
| Pumpkinseed          | 5.6       | 7.4   | 6.6   | 4.1   | 14.0  | 2.5   | 4.1   | 4.9   | 4.9   | 4.9   | 4.9     | 5.8       |
| Smallmouth bass      | 0.7       | 0.8   | 0.8   | -     | -     | -     | -     | -     | -     | -     | -       | 0.2       |
| Yellow perch         | 1,013.7   | 948.2 | 737.7 | 727.0 | 565.8 | 939.1 | 421.1 | 671.1 | 650.5 | 537.0 | 1,381.6 | 757.9     |
| Walleye              | 28.9      | 16.4  | 24.7  | 18.1  | 14.0  | 5.8   | 11.5  | 16.4  | 7.4   | 18.1  | 13.2    | 14.6      |
| Round goby           | -         | -     | 1.6   | 1.6   | 1.6   | 0.8   | -     | -     | -     | -     | -       | 0.6       |
| Freshwater drum      | 7.1       | 1.6   | 20.6  | 8.2   | 43.6  | 16.4  | 54.3  | 6.6   | 5.8   | 6.6   | 4.9     | 16.9      |
| Total catch          | 1,271     | 1,160 | 905   | 836   | 786   | 983   | 762   | 854   | 836   | 727   | 1,750   | 960       |
| Number of species    | 14        | 12    | 14    | 11    | 11    | 10    | 11    | 14    | 13    | 10    | 9       | 12        |
| Number of sets       |           | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 4       |           |

early 1990s, and which was attributed to reduced stocking levels combined with a decline in early survival of the stocked fish. The current increase in numbers of adults appears to be due to increased early-life survival of stocked fish (Fig. 2.2.6), and it should result in further increases in adults at least for the next few years. The condition of adult fish has also improved in recent years (Fig. 2.2.7), perhaps due to inclusion of round gobies in the diet. Lamprey wounding rates remain under target levels (Fig. 2.2.8), suggesting that lamprey mortality is at acceptably low levels.

TABLE 2.2.8. Species-specific catch per gillnet set at **Conway, Bay of Quinte**, 1993-2010. Annual catches are averages for 1-2 gillnet gangs set at each of 5 depths (range 5-40 m) during each of 2 visits (summer). The total number of species caught and gillnets set each year are indicated.

|                                |              |             |             |             |            | Y          | ear       |            |            |            |              |              |
|--------------------------------|--------------|-------------|-------------|-------------|------------|------------|-----------|------------|------------|------------|--------------|--------------|
| <b>a</b> .                     | 1992-2000    | 2001        | 2002        | 2002        | 2004       | 2005       | 2006      | 2007       | 2000       | 2000       | 2010         | 2001-2010    |
| Species                        | mean         | 2001        | 2002        | 2003        | 2004       | 2005       | 2006      | 2007       | 2008       | 2009       | 2010         | mean         |
| Sea lamprey                    | 0.0<br>0.0   |             | -           | -           | -          | -          | -         | -          | -          | -          | -            | -            |
| Lake sturgeon                  | 0.0<br>0.0   | - 0.3       | -           | -           | -          | -          | -         | -          | -          | -          | -            | -<br>0.0     |
| Longnose gar<br>Alewife        | 0.0<br>307.5 | 0.3<br>54.3 | -<br>19.1   | -<br>39.5   | -<br>106.6 | -<br>456.9 | -<br>76.0 | - 127.3    | -<br>467.1 | -<br>493.1 | -<br>1,153.6 | 0.0<br>299.3 |
| Gizzard shad                   | 507.5<br>0.1 | - 54.5      |             |             | 0.3        | 430.9      |           | 127.5      | 407.1      | 495.1      | 1,155.0      | 299.3        |
| Chinook salmon                 | 0.1          | - 0.3       | -           | - 0.3       | 0.5        | -          | -         | 0.7        | 0.7        | - 0.7      | 0.3          | 0.2          |
| Rainbow trout                  | 0.2          | 0.5         | -           | -           | 0.7<br>-   | - 0.3      | -         | - 0.7      | -          | -          | - 0.5        | 0.4          |
| Atlantic salmon                | -<br>0.1     | -           | -           | -           | -          | -          | -         | -          | -          | -          | -            | 0.0          |
| Brown trout                    | 0.1<br>1.9   | 0.7         | - 0.3       | - 2.3       | - 0.7      | -<br>1.6   | -<br>1.6  | - 1.0      | - 3.0      | - 1.0      | 0.3          | -<br>1.3     |
| Lake trout                     | 1.9          | 4.9         | 0.5<br>15.1 | 2.5<br>11.5 | 13.5       | 18.1       | 7.6       | 8.9        | 5.0<br>6.3 | 0.7        | 1.0          | 1.3<br>8.8   |
| Lake whitefish                 | 13.3<br>6.3  | 4.9<br>3.0  | 13.1        | 4.9         | 0.7        | 3.9        | 2.0       | 0.9<br>1.6 | 1.3        | 0.7        | 1.0          | 8.8<br>2.1   |
|                                | 0.3          | 5.0<br>1.3  | -           | 4.9         | -          | -          | 0.3       | -          | 0.7        | 0.3        | 1.5          | 2.1<br>0.4   |
| Cisco (Lake herring)           | 1.2<br>0.0   | -           | -           | -           | - 0.3      | -          | -         | -          | -          | -          | -            | 0.4          |
| Coregonus sp.<br>Rainbow smelt | 0.0          | - 1.3       | -           | -           | 0.3        | - 1.3      | 0.3       | -          | - 2.3      | - 0.7      | - 1.0        | 0.0          |
| Northern pike                  | 0.5          | 0.3         | -           | - 0.3       | -          | -          | -         | - 0.3      | 2.3<br>0.3 | -          | 0.3          | 0.7          |
| White sucker                   | 0.2<br>15.5  | 21.7        | -<br>17.1   | 0.5<br>14.1 | -<br>6.9   | - 3.9      | - 3.0     | 0.5<br>9.5 | 0.5<br>3.6 | 2.0        | 1.3          | 0.2<br>8.3   |
| Silver redhorse                | 0.1          | -           | -           | - 14.1      | -          | -          | -         | 9.5        | 5.0        | 2.0        | -            | 0.5          |
| Moxostoma sp.                  | 0.1          | -           | -           | -           | -          | -          | -         | -          | -          | -          | -            | -            |
| Common carp                    | 0.1          | -           | -           | -           | -          | -          | -         | - 0.3      | -          | -          | -            | -<br>0.0     |
| Brown bullhead                 | 0.2          | 0.3         | -           | - 0.7       | - 1.3      | 1.0        | -<br>5.9  | 2.3        | -          | -          | -            | 1.2          |
| Channel catfish                | 0.5          | 0.3         | 0.3         | -           | -          | 0.3        | -         | 2.5        | -          | -          | -            | 0.1          |
| Stonecat                       | -            | 0.3         | 0.3         | -           | -          | 0.5        | -         | -          | -          | -          | -            | 0.1          |
| Burbot                         | -<br>0.1     | -           | -           | -           | -          | -          | -         | -          | -          | -          | -            | 0.1          |
| Trout-perch                    | 0.1          |             | -           | -           | _          |            | -         | _          | _          |            | _            | -            |
| White perch                    | 12.8         | _           | 0.3         | 5.6         | 17.4       | _          | 5.6       | 8.2        | 7.6        | 1.0        | 0.3          | 4.6          |
| Rock bass                      | 12.0         | 3.0         | 5.9         | 1.0         | 17.4       | 3.3        | 6.3       | 25.3       | 13.5       | 1.3        | 6.3          | <b>6.7</b>   |
| Pumpkinseed                    | 0.2          | 0.3         | 0.3         | 0.3         | -          | -          | -         | 0.3        | -          | -          | -            | 0.1          |
| Smallmouth bass                | 2.1          | 0.3         | -           | -           | _          | 0.3        | 1.0       | 1.0        | 0.3        | _          | 1.0          | 0.1          |
| Yellow perch                   | 554.3        | 430.9       | 509.9       | 320.1       | 218.1      | 184.2      | 376.6     | 119.7      | 171.7      | 76.3       | 106.9        | 251.4        |
| Walleye                        | 54.1         | 6.6         | 9.5         | 17.8        | 6.9        | 8.2        | 12.5      | 16.4       | 10.5       | 9.2        | 8.2          | 10.6         |
| Round goby                     | -            | -           | 6.6         | 72.4        | 204.3      | 5.3        | 12.5      | 0.7        | 1.6        | -          | 0.2          | 29.2         |
| Freshwater drum                | 3.5          | 0.3         | 0.0         | 1.0         | 4.3        | 3.3        | 7.9       | 8.9        | 4.9        | 2.6        | 4.9          | 3.9          |
| Total catch                    | 990          | 531         | 587         | 492         | 583        | 692        | 508       | 334        | 696        | 589        | 1,288        | 630          |
| Number of species              | 15.5         | 19          | 14          | 15          | 16         | 15         | 15        | 18         | 17         | 13         | 16           | 15.8         |
| Number of sets                 |              | 20          | 20          | 20          | 20         | 20         | 20        | 20         | 20         | 20         | 20           |              |

TABLE 2.2.9. Age distribution of **34 lake whitefish** sampled from summer index gillnets, by region, 2010. Also shown are mean fork length, mean weight, mean GSI (females), and percent mature (females). GSI = gonadal somatic index calculated for **females only** as log10(gonad weight + 1)/log10(weight). A GSI greater than approximately 0.25 indicates a mature female.

|                            |      |      |      | Age (ye | ars) / Yes | sr class |      |      |      |       |
|----------------------------|------|------|------|---------|------------|----------|------|------|------|-------|
|                            | 1    | 2    | 4    | 5       | 6          | 7        | 8    | 11   | 16   | Total |
| Region                     | 2009 | 2008 | 2006 | 2005    | 2004       | 2003     | 2002 | 1999 | 1994 |       |
| Bay of Quinte              | 2    | 1    | 0    | 0       | 0          | 0        | 0    | 1    | 0    | 4     |
| Kingston Basin (deep)      | 0    | 2    | 2    | 3       | 1          | 11       | 2    | 1    | 1    | 23    |
| Kingston Basin (nearshore) | 0    | 2    | 1    | 0       | 0          | 4        | 0    | 0    | 0    | 7     |
| Total                      | 2    | 5    | 3    | 3       | 1          | 15       | 2    | 2    | 1    | 34    |
| Mean fork length (mm)      | 178  | 246  | 378  | 409     | 432        | 445      | 434  | 480  | 540  |       |
| Mean weight (g)            | 51   | 164  | 640  | 780     | 862        | 1046     | 1162 | 1328 | 1555 |       |
| Mean GSI (females)         |      |      | 0.21 | 0.58    |            | 0.51     | 0.55 | 0.60 | 0.45 |       |
| % Mature (females)         |      | 0%   | 0%   | 100%    |            | 100%     | 100% | 100% | 100% |       |

TABLE 2.2.10. Age distribution of **387 walleye** sampled from summer index gillnets, by region, 2010. Also shown are mean fork length, mean weight, mean GSI (females), and percent mature (females). GSI = gonadal somatic index calculated for females only as log10(gonad weight + 1)/log10(weight).

|                            |      |      |      |      |      |      |      |      |      | Ag   | e (year | s) / Yea | r-class |      |      |      |      |      |      |      |      |      |       |
|----------------------------|------|------|------|------|------|------|------|------|------|------|---------|----------|---------|------|------|------|------|------|------|------|------|------|-------|
|                            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11      | 12       | 13      | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | Total |
| Region                     | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999    | 1998     | 1997    | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 |       |
| Bay of Quinte              | 9    | 50   | 25   | 4    | 2    | 1    | 1    | 0    | 1    | 0    | 0       | 0        | 1       | 0    | 1    | 0    | 2    | 1    | 0    | 0    | 0    | 0    | 98    |
| Kingston Basin (nearshore) | 1    | 8    | 1    | 6    | 22   | 19   | 57   | 1    | 27   | 11   | 29      | 17       | 3       | 7    | 12   | 16   | 11   | 6    | 15   | 2    | 3    | 1    | 275   |
| Middle Ground              | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0        | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1     |
| Northeast                  | 0    | 0    | 1    | 0    | 1    | 0    | 3    | 0    | 1    | 1    | 1       | 2        | 0       | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 12    |
| Western                    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0       | 0        | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1     |
| Total                      | 10   | 59   | 27   | 10   | 25   | 20   | 62   | 1    | 29   | 12   | 30      | 19       | 4       | 7    | 13   | 16   | 14   | 7    | 15   | 3    | 3    | 1    | 387   |
| Mean fork length (mm)      | 223  | 308  | 398  | 469  | 527  | 548  | 576  | 566  | 594  | 602  | 621     | 631      | 590     | 618  | 661  | 654  | 642  | 651  | 648  | 642  | 694  | 630  |       |
| Mean weight (g)            | 110  | 316  | 793  | 1345 | 1951 | 2269 | 2774 | 2330 | 2958 | 3168 | 3440    | 3607     | 2939    | 3244 | 4022 | 3962 | 3564 | 3761 | 3746 | 3543 | 4512 | 3033 |       |
| Mean GSI (females)         | 0.04 | 0.09 | 0.20 | 0.32 | 0.33 | 0.36 | 0.40 |      | 0.36 | 0.39 | 0.42    | 0.44     | 0.46    | 0.48 | 0.47 | 0.43 | 0.46 | 0.47 | 0.50 | 0.48 | 0.48 |      |       |
| % Mature (females)         | 0%   | 0%   | 7%   | 100% | 81%  | 90%  | 94%  |      | 80%  | 100% | 93%     | 100%     | 100%    | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |      |       |

TABLE 2.2.11. Age distribution of 54 **lake herring** sampled from summer index gillnets, by region, 2010. Also shown are mean fork length and mean weight.

|                            |      |      |      | A    | ge (years) / | Year-class | S    |      |      |      |       |
|----------------------------|------|------|------|------|--------------|------------|------|------|------|------|-------|
|                            | 2    | 3    | 4    | 5    | 6            | 7          | 8    | 9    | 12   | 14   | Total |
| Region                     | 2008 | 2007 | 2006 | 2005 | 2004         | 2003       | 2002 | 2001 | 1998 | 1996 |       |
| Bay of Quinte              | 3    | 15   | 12   | 2    | 1            | 5          | 2    | 1    | 0    | 0    | 41    |
| Kingston Basin (nearshore) | 0    | 0    | 1    | 0    | 1            | 2          | 2    | 0    | 1    | 0    | 7     |
| Kingston Basin (deep)      | 0    | 0    | 0    | 1    | 0            | 3          | 0    | 0    | 0    | 1    | 5     |
| Northeast                  | 0    | 0    | 0    | 0    | 0            | 0          | 0    | 1    | 0    | 0    | 1     |
| Total                      | 3    | 15   | 13   | 3    | 2            | 10         | 4    | 2    | 1    | 1    | 54    |
| Mean fork length (mm)      | 226  | 279  | 302  | 313  | 355          | 362        | 378  | 384  | 348  | 398  |       |
| Mean weight (g)            | 143  | 265  | 343  | 406  | 622          | 675        | 784  | 827  | 529  | 896  |       |



FIG. 2.2.2. Lake whitefish mean fork length-at-age for the 2003 year-class.

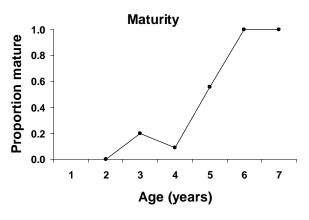



FIG. 2.2.3. Proportion of mature lake whitefish (females) by age for the 2003 year-class.

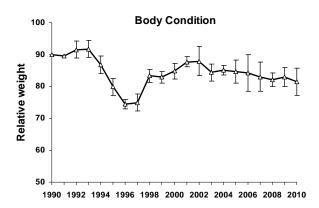



FIG. 2.2.4. Lake whitefish relative weight (see Rennie and Verdon, 2008) for fish caught in summer index gillnets, 1990-2010.

Rennie, M.D. and R. Verdon. 2008. Development and evaluation of condition indices for the lake whitefish. N. Amer. J. Fish. Manage. 28:1270-1293.

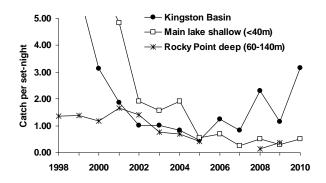



FIG. 2.2.5. Catch per unit effort of adult lake trout in bottom-set gillnets in three areas of eastern lake Ontario. Deep sets off Rocky Point were not fished in 2006, 2007, and 2010.

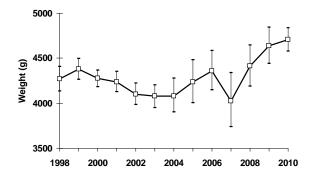



FIG. 2.2.7. Condition of adult lake trout expressed as the predicted weight of a 680 mm fork length fish. The predictions are based on yearly length-weight regressions, and 95% confidence intervals for the predictions are shown.

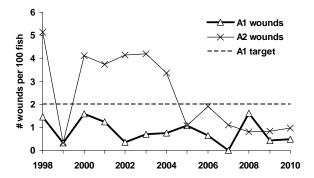



FIG. 2.2.8. Frequency of A1 (fresh) and A2 (partially healed) lamprey wounds observed on lake trout. The lamprey control target is 2.0 A1 wounds per 100 fish.

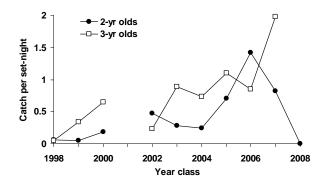



FIG. 2.2.6. Lake trout relative survival to ages 2 and 3. The survival index is the catch per unit effort of 2 and 3 year-old fish, corrected for number stocked 2 or 3 years earlier; age determination is based on year-specific fin clip information combined with the size of the fish. The low catches of 2-year old fish in 2010 do not necessarily indicate decreased survival, but are more likely due to a combination of small size of stocked yearlings in 2009, and unusually warm temperatures in 2010, both of which would result in lower vulnerability of these fish to index gillnets.

#### 2.3 Eastern Lake Ontario and Bay of Quinte Fish Community Index Trawling

Bottom trawling at fixed sites (Fig. 2.3.1) in eastern Lake Ontario (ranging in depth from 21-100 m) and the Bay of Quinte (ranging in depth from 4 to 23 m) has occurred annually since 1972 (except 1989). Typically, <sup>1</sup>/<sub>2</sub> mile trawl drags using a three-quarter "Yankee Standard" No. 35 bottom trawl are made at Lake Ontario sites while 1/4 mile drags using a threequarter "Western" bottom trawl are made at Bay of Ouinte sites. At the deep Rocky Point trawl site (100 m) the trawling distance is 1 mile. Bottom trawling is used primarily to monitor the abundance of small fish species and the young (e.g. age-0) of larger species. Species-specific catches in the 2009 trawling program are shown in Tables 2.3.1-2.3.9. Twenty-eight species and over 75,000 fish were caught in 88 bottom trawls in 2010. Round goby (35%), alewife (26%), yellow perch (12%), gizzard shad (7%), sunfish (6%), rainbow smelt (5%) and white perch (4%) collectively made up 94% of the catch by number.

#### Lake Ontario Sites

#### EB02

Six species, alewife, round goby, rainbow smelt, lake trout, yellow perch and walleye were caught at EB02 in 2010 (Table 2.3.1). Alewife catches were high relative to the last decade. Threespine stickleback, having risen to high levels of abundance in the late 1990s, declined rapidly after 2003 and has been absent in the EB02 catches for the last four years.

#### EB03

Seven species were caught at EB03 in 2010. The most abundant species were round goby and rainbow smelt. Rainbow smelt abundance was high relative to the last decade. Round goby, having first appeared in the EB03 catches in 2004, now dominate the total catch. As was the case for EB02, threespine stickleback have been absent from the EB03 catches for four years. Trout-perch and slimy sculpin have also been absent from the catches for the last few years (Table 2.3.2).

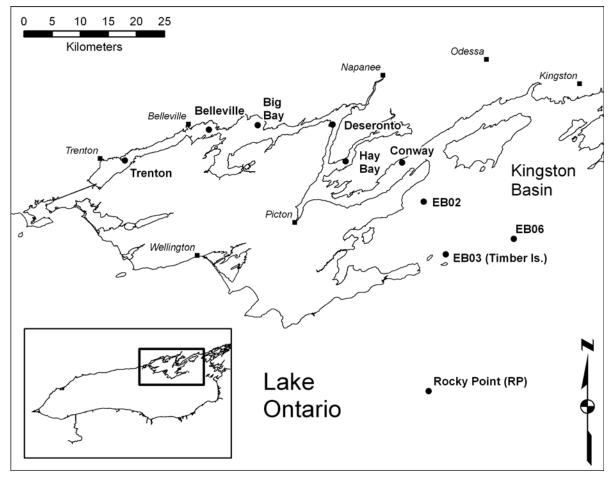



FIG. 2.3.1. Map of northeastern Lake Ontario. Shown are eastern Lake Ontario and Bay of Quinte fish community index bottom trawling site locations.

TABLE 2.3.1. Species-specific catch per trawl (12 min duration; 1/2 mile) by year in the fish community index bottom trawling program during summer at **EB02**, eastern Lake Ontario. Catches are the mean number of fish observed for the number of trawls indicated. Total catch and number of species caught are indicated.

|                        |                   |         |        |        |         | Y      | ear    |         |        |         |         |                   |
|------------------------|-------------------|---------|--------|--------|---------|--------|--------|---------|--------|---------|---------|-------------------|
| Species                | 1992-2000<br>mean | 2001    | 2002   | 2003   | 2004    | 2005   | 2006   | 2007    | 2008   | 2009    | 2010    | 2001-2010<br>mean |
| Alewife                | 1220.305          | 203.333 | 20.917 | 19.500 | 27.100  | 0.000  | 0.417  | 11.000  | 0.667  | 72.425  | 463.950 | 81.931            |
| Rainbow trout          | 0.019             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Lake trout             | 0.202             | 0.000   | 0.083  | 0.083  | 0.000   | 0.583  | 0.167  | 0.583   | 0.500  | 0.000   | 0.167   | 0.217             |
| Lake whitefish         | 3.203             | 0.167   | 0.000  | 0.583  | 0.400   | 0.250  | 0.000  | 0.167   | 0.000  | 0.250   | 0.000   | 0.182             |
| Cisco (Lake herring)   | 0.362             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Coregonus sp.          | 0.006             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Rainbow smelt          | 440.899           | 29.667  | 7.917  | 0.917  | 5.000   | 19.750 | 28.750 | 3.583   | 5.667  | 114.408 | 14.667  | 23.033            |
| Emerald shiner         | 0.009             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Burbot                 | 0.009             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Threespine stickleback | 13.395            | 18.750  | 34.417 | 49.500 | 6.200   | 9.000  | 0.167  | 0.000   | 0.000  | 0.000   | 0.000   | 11.803            |
| Trout-perch            | 4.675             | 0.250   | 0.000  | 0.167  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.042             |
| Yellow perch           | 0.019             | 0.000   | 0.000  | 0.000  | 0.700   | 0.333  | 0.083  | 0.000   | 0.000  | 0.000   | 0.083   | 0.120             |
| Walleye                | 0.056             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.083   | 0.008             |
| Johnny darter          | 0.077             | 0.000   | 0.000  | 0.000  | 0.400   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.040             |
| Round goby             | 0.000             | 0.000   | 0.000  | 0.083  | 250.100 | 24.833 | 40.083 | 119.750 | 26.667 | 169.900 | 143.924 | 77.534            |
| Slimy sculpin          | 2.084             | 0.417   | 0.667  | 44.083 | 74.900  | 0.750  | 0.167  | 0.000   | 0.000  | 0.000   | 0.000   | 12.098            |
| Deepwater sculpin      | 0.046             | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  | 0.000   | 0.000  | 0.000   | 0.000   | 0.000             |
| Total catch            | 1685              | 253     | 64     | 115    | 365     | 56     | 70     | 135     | 34     | 357     | 623     | 207               |
| Number of species      | 9                 | 6       | 5      | 8      | 8       | 7      | 7      | 5       | 4      | 4       | 6       | 6                 |
| Number of trawls       |                   | 12      | 12     | 12     | 12      | 12     | 12     | 12      | 12     | 12      | 12      |                   |

TABLE 2.3.2. Species-specific catch per trawl (12 min duration; 1/2 mile) by year in the fish community index bottom trawling program during summer at **EB03**, eastern Lake Ontario. Catches are the mean number of fish observed for the number of trawls indicated. Total catch and number of species caught are indicated.

|                        |           |         |         |         |          | Y       | 'ear    |         |          |          |          |           |
|------------------------|-----------|---------|---------|---------|----------|---------|---------|---------|----------|----------|----------|-----------|
|                        | 1992-2000 |         |         |         |          |         |         |         |          |          |          | 2001-2010 |
| Species                | mean      | 2001    | 2002    | 2003    | 2004     | 2005    | 2006    | 2007    | 2008     | 2009     | 2010     | mean      |
| Alewife                | 704.382   | 57.375  | 21.375  | 8.000   | 168.375  | 14.833  | 15.250  | 33.917  | 156.325  | 0.000    | 0.250    | 47.570    |
| Gizzard shad           | 0.000     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.250   | 0.000    | 0.000    | 0.000    | 0.025     |
| Chinook salmon         | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.667   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.067     |
| Lake trout             | 0.847     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.250   | 0.000    | 0.083    | 0.000    | 0.033     |
| Lake whitefish         | 14.412    | 0.000   | 0.000   | 43.938  | 2.333    | 50.000  | 3.000   | 1.417   | 0.000    | 0.083    | 4.667    | 10.544    |
| Cisco (Lake herring)   | 0.292     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Rainbow smelt          | 517.345   | 20.000  | 207.488 | 109.231 | 1.917    | 25.667  | 20.625  | 21.500  | 0.250    | 11.583   | 217.933  | 63.619    |
| White sucker           | 0.093     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.083   | 0.000    | 0.000    | 0.000    | 0.008     |
| Common carp            | 0.130     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Spottail shiner        | 42.449    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.250    | 0.083    | 0.033     |
| American eel           | 0.056     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Brook stickleback      | 0.009     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Threespine stickleback | 32.894    | 67.375  | 680.138 | 459.275 | 2781.625 | 116.083 | 8.500   | 0.000   | 0.000    | 0.000    | 0.000    | 411.300   |
| Trout-perch            | 689.067   | 175.000 | 592.200 | 56.294  | 255.083  | 3.417   | 3.750   | 0.417   | 0.000    | 0.000    | 0.000    | 108.616   |
| White perch            | 0.032     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Pumpkinseed            | 0.000     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.083    | 0.008     |
| Smallmouth bass        | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Largemouth bass        | 0.000     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.083    | 0.008     |
| Yellow perch           | 0.093     | 0.000   | 0.000   | 0.625   | 0.083    | 0.000   | 0.500   | 0.167   | 0.125    | 0.000    | 0.000    | 0.150     |
| Walleye                | 0.236     | 0.000   | 0.000   | 0.063   | 0.000    | 0.000   | 0.125   | 0.000   | 0.000    | 0.417    | 0.000    | 0.060     |
| Johnny darter          | 0.875     | 0.000   | 0.000   | 9.875   | 32.833   | 0.167   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 4.288     |
| Round goby             | 0.000     | 0.000   | 0.000   | 0.000   | 0.333    | 732.358 | 850.325 | 910.133 | 1100.163 | 2551.917 | 1079.833 | 722.506   |
| Freshwater drum        | 0.046     | 0.000   | 0.000   | 0.000   | 0.083    | 0.000   | 0.125   | 0.000   | 0.125    | 0.000    | 0.000    | 0.033     |
| Sculpin sp.            | 0.194     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000     |
| Mottled sculpin        | 0.000     | 0.000   | 0.000   | 0.688   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.069     |
| Slimy sculpin          | 0.370     | 0.000   | 0.250   | 6.750   | 10.833   | 0.083   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 1.792     |
| Total catch            | 2004      | 320     | 1501    | 695     | 3254     | 943     | 902     | 968     | 1257     | 2564     | 1303     | 1371      |
| Number of species      | 10        | 4       | 5       | 10      | 10       | 9       | 9       | 9       | 5        | 6        | 7        | 7         |
| Number of trawls       |           | 8       | 8       | 16      | 12       | 12      | 8       | 12      | 8        | 12       | 12       |           |

#### EB06

Six species were caught at EB06 in 2010. Round goby and rainbow smelt were the most abundant species caught (Table 2.3.3). Round goby abundance was very high relative to previous years. Of particular significance is the capture of two deepwater sculpin; a species of special concern (see Section 8.1).

#### Rocky Point

Netting operations were not completed at the Rocky Point deep trawl site in 2010 because our vessel was not compliant with Transport Canada Regulations; the sites were too far offshore. With our new vessel, this issue will be resolved for 2011.

#### Bay of Quinte Sites

#### Trenton

Twenty-one species were caught at Trenton in 2010. The most abundant species were yellow perch, spottail shiner, gizzard shad, pumpkinseed, alewife and white perch. White perch abundance was particularly low in 2010 (Table 2.3.4).

#### Belleville

Twenty species were caught at Belleville in 2010. Gizzard shad, yellow perch, sunfish, and white perch were the most abundant species in the catch. Catches of gizzard shad, yellow perch and sunfish were high while white perch catch was relatively low relative to previous years (Table 2.3.5).

#### Big Bay

Eighteen species were caught at Big Bay in 2010. The most abundant species were alewife, white perch, yellow perch and sunfish. Alewife and gizzard shad catches were relatively high while white perch catches were low compared to previous years (Table 2.3.6).

#### Deseronto

Twenty-one species were caught at Deseronto in 2010. The most abundant species were alewife, yellow perch, white perch, gizzard shad, spottail shiner and pumpkinseed. Alewife catches were high while yellow perch and white perch catches were relatively low compared to previous years (Table 2.3.7).

#### Hay Bay

Eighteen species were caught at Hay Bay in 2010. The most abundant species were alewife and yellow perch. White perch catches were low compared with prior years (Table 2.3.8).

#### Conway

Only eight species were caught at Conway in 2010. The most abundant species were round goby, yellow perch and cisco (lake herring) (Table 2.3.9).

TABLE 2.3.3. Species-specific catch per trawl (12 min duration; 1/2 mile) by year in the fish community index bottom trawling program during summer at **EB06**, eastern Lake Ontario. Catches are the mean number of fish observed for the number of trawls indicated. Total catch and number of species caught are indicated.

|                        |           |        |        |        |         | Yea     | r      |        |       |        |         |           |
|------------------------|-----------|--------|--------|--------|---------|---------|--------|--------|-------|--------|---------|-----------|
|                        | 1992-2000 |        |        |        |         |         |        |        |       |        |         | 2001-2010 |
| Species                | mean      | 2001   | 2002   | 2003   | 2004    | 2005    | 2006   | 2007   | 2008  | 2009   | 2010    | mean      |
| Alewife                | 85.619    | 5.583  | 0.250  | 0.083  | 1.250   | 0.417   | 8.000  | 0.917  | 0.667 | 10.833 | 1.083   | 2.908     |
| Lake trout             | 0.611     | 0.083  | 0.083  | 0.083  | 0.083   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.033     |
| Lake whitefish         | 4.546     | 0.000  | 0.167  | 0.167  | 0.250   | 0.000   | 0.000  | 0.083  | 0.000 | 0.000  | 0.083   | 0.075     |
| Cisco (Lake herring)   | 0.028     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.000     |
| Rainbow smelt          | 743.666   | 21.417 | 6.750  | 0.250  | 25.083  | 142.583 | 23.917 | 0.583  | 1.000 | 3.500  | 73.167  | 29.825    |
| Threespine stickleback | 7.722     | 2.583  | 47.750 | 11.417 | 7.500   | 13.917  | 1.083  | 0.000  | 0.000 | 0.000  | 0.000   | 8.425     |
| Trout-perch            | 0.991     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.000     |
| Yellow perch           | 0.019     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.000     |
| Johnny darter          | 0.000     | 0.000  | 0.000  | 0.000  | 0.333   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.033     |
| Round goby             | 0.000     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 5.000  | 82.925 | 1.667 | 8.667  | 877.767 | 97.603    |
| Sculpin sp.            | 0.009     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 0.000  | 0.000  | 0.000 | 0.000  | 0.000   | 0.000     |
| Slimy sculpin          | 0.083     | 0.083  | 0.000  | 3.583  | 399.158 | 15.750  | 0.250  | 0.000  | 0.000 | 0.500  | 1.500   | 42.083    |
| Deepwater sculpin      | 0.000     | 0.000  | 0.000  | 0.000  | 0.000   | 0.000   | 0.000  | 0.000  | 0.000 | 0.083  | 0.167   | 0.025     |
| Total catch            | 843       | 30     | 55     | 16     | 434     | 173     | 38     | 85     | 3     | 24     | 954     | 181       |
| Number of species      | 6         | 5      | 5      | 6      | 7       | 4       | 5      | 4      | 3     | 5      | 6       | 5         |
| Number of trawls       |           | 12     | 12     | 12     | 12      | 12      | 12     | 12     | 12    | 12     | 12      |           |

TABLE 2.3.4. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Trenton** (4 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                   |           |         |         |         |         | Y       | ear     |         |         |          |         | ı         |
|-------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|-----------|
|                   | 1992-2000 |         |         |         |         |         |         |         |         |          |         | 2001-2010 |
| Species           | mean      | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    | 2008    | 2009     | 2010    | mean      |
| Alewife           | 66.908    | 149.288 | 98.600  | 174.113 | 8.625   | 508.825 | 126.625 | 24.500  | 8.750   | 112.363  | 26.875  | 123.856   |
| Gizzard shad      | 165.272   | 4.125   | 6.375   | 22.250  | 0.000   | 30.375  | 23.375  | 1.375   | 38.500  | 5.750    | 84.225  | 21.635    |
| Rainbow smelt     | 0.056     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Northern pike     | 0.069     | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.013     |
| Mooneye           | 0.056     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| White sucker      | 3.000     | 0.500   | 1.625   | 0.625   | 1.125   | 1.875   | 2.125   | 2.125   | 0.375   | 0.500    | 0.750   | 1.163     |
| Minnow            | 0.014     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Common carp       | 0.278     | 0.000   | 0.250   | 0.000   | 0.000   | 0.000   | 0.250   | 0.000   | 0.000   | 0.000    | 0.125   | 0.063     |
| Spottail shiner   | 88.467    | 217.400 | 60.875  | 60.875  | 1.250   | 24.500  | 41.750  | 0.000   | 76.000  | 148.400  | 120.050 | 75.110    |
| Brown bullhead    | 26.431    | 10.625  | 3.500   | 4.250   | 1.125   | 8.750   | 3.750   | 4.500   | 1.375   | 0.875    | 1.500   | 4.025     |
| Channel catfish   | 0.236     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| American eel      | 0.250     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Banded killifish  | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.125   | 0.013     |
| Burbot            | 0.000     | 0.125   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.013     |
| Trout-perch       | 27.139    | 0.500   | 0.500   | 0.000   | 0.000   | 0.125   | 0.125   | 0.000   | 0.250   | 1.625    | 1.500   | 0.463     |
| White perch       | 321.078   | 54.250  | 19.875  | 240.000 | 80.775  | 278.988 | 388.213 | 29.875  | 33.750  | 669.275  | 16.250  | 181.125   |
| White bass        | 0.403     | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 1.250   | 0.125   | 0.000   | 0.875    | 0.125   | 0.250     |
| Sunfish           | 13.764    | 33.250  | 0.000   | 22.375  | 0.000   | 0.000   | 11.500  | 0.000   | 0.875   | 0.000    | 0.000   | 6.800     |
| Rock bass         | 0.889     | 0.625   | 0.625   | 0.125   | 0.000   | 0.500   | 2.250   | 0.000   | 1.250   | 2.875    | 2.250   | 1.050     |
| Pumpkinseed       | 86.344    | 84.750  | 32.250  | 88.875  | 56.788  | 46.750  | 20.000  | 77.513  | 143.775 | 66.250   | 62.250  | 67.920    |
| Bluegill          | 0.750     | 1.125   | 0.500   | 1.500   | 0.875   | 0.375   | 3.875   | 5.250   | 2.625   | 0.625    | 5.125   | 2.188     |
| Smallmouth bass   | 0.556     | 0.375   | 0.250   | 0.500   | 0.500   | 0.125   | 0.000   | 0.000   | 0.125   | 0.250    | 0.000   | 0.213     |
| Largemouth bass   | 2.236     | 2.375   | 2.875   | 4.625   | 0.125   | 6.625   | 4.250   | 0.125   | 6.375   | 2.750    | 6.875   | 3.700     |
| Black crappie     | 1.681     | 0.125   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.013     |
| Lepomis sp.       | 0.764     | 0.000   | 64.788  | 0.000   | 0.000   | 59.750  | 10.250  | 0.000   | 17.000  | 0.625    | 7.125   | 15.954    |
| Yellow perch      | 317.754   | 200.625 | 239.000 | 544.613 | 186.375 | 340.825 | 130.125 | 584.738 | 769.538 | 1095.063 | 335.263 | 442.616   |
| Walleye           | 9.764     | 9.625   | 3.625   | 10.500  | 1.500   | 1.875   | 0.750   | 4.750   | 7.375   | 6.125    | 2.125   | 4.825     |
| Johnny darter     | 5.458     | 2.500   | 7.250   | 7.625   | 0.375   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 1.775     |
| Logperch          | 3.097     | 2.000   | 0.000   | 15.250  | 4.250   | 52.750  | 0.625   | 5.625   | 23.375  | 32.375   | 6.875   | 14.313    |
| Brook silverside  | 0.000     | 0.000   | 0.000   | 0.250   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.000    | 0.125   | 0.050     |
| Round goby        | 0.000     | 0.000   | 0.000   | 2.875   | 8.500   | 13.125  | 5.250   | 0.750   | 12.375  | 34.125   | 7.375   | 8.438     |
| Freshwater drum   | 11.931    | 6.750   | 3.625   | 2.000   | 0.375   | 4.125   | 4.875   | 9.500   | 1.500   | 4.875    | 1.375   | 3.900     |
| Total catch       | 1155      | 781     | 547     | 1203    | 353     | 1380    | 781     | 751     | 1145    | 2186     | 688     | 981       |
| Number of species | 20        | 20      | 19      | 19      | 15      | 19      | 20      | 15      | 19      | 19       | 21      | 19        |
| Number of trawls  |           | 8       | 8       | 8       | 8       | 8       | 8       | 8       | 8       | 8        | 8       |           |

Species Highlights

Catches of age-0 fish in 2010 for selected species and locations are shown in Tables 2.3.10-2.3.13 for lake whitefish, lake herring, yellow perch and walleye respectively. Age-0 lake whitefish catches were low at Conway and low to moderate at Timber Island in 2010 (Table 2.3.10). Age-0 lake herring catches at Conway were relatively high in 2010 (Table 2.3.11). Age-0 catches of yellow perch were relatively high (Table 2.3.12). Age-0 walleye catches were moderate (Table 2.3.13).

Age-0, age-1 and age-2 walleye were all common in the 2010 Bay of Quinte trawls (Table 2.3.14).

Round goby first appeared in bottom trawl catches in the Bay of Quinte in 2001 and in the Kingston Basin of eastern Lake Ontario in 2003. The species was caught at all Bay of Quinte trawling sites by 2003, peaking in abundance, at each site, between 2003 and 2005. Catches have been quite variable since. Round goby catches in the Kingston Basin remained very high at EB02 and EB03 and increased significantly at EB06 in 2010.

Two deepwater sculpin, a species of special concern, were caught in 2010, both at EB06 (35 m depth). The fish, one female and one male, were 74 and 89 mm total length and weighed 3.27 and 5.60 g respectively.

TABLE 2.3.5. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Belleville** (5 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                   |           |         |         |         |          | Ye      | ear     |         |         |          |         |           |
|-------------------|-----------|---------|---------|---------|----------|---------|---------|---------|---------|----------|---------|-----------|
|                   | 1992-2000 |         |         |         |          |         |         |         |         |          |         | 2001-2010 |
| Species           | mean      | 2001    | 2002    | 2003    | 2004     | 2005    | 2006    | 2007    | 2008    | 2009     | 2010    | mean      |
| Sea lamprey       | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Longnose gar      | 0.000     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 6.000   | 0.600     |
| Alewife           | 92.032    | 0.250   | 82.375  | 0.125   | 11.500   | 13.875  | 9.750   | 0.125   | 34.875  | 78.775   | 59.813  | 29.146    |
| Gizzard shad      | 266.406   | 99.200  | 234.363 | 46.025  | 581.775  | 50.563  | 88.325  | 73.313  | 326.875 | 321.425  | 500.788 | 232.265   |
| Rainbow smelt     | 0.111     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Northern pike     | 0.111     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Mooneye           | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| White sucker      | 2.648     | 0.375   | 0.375   | 0.500   | 0.125    | 0.000   | 0.750   | 0.250   | 0.250   | 0.125    | 0.625   | 0.338     |
| Common carp       | 0.319     | 0.125   | 0.125   | 0.625   | 0.000    | 0.500   | 0.625   | 0.250   | 0.125   | 1.000    | 1.500   | 0.488     |
| Spottail shiner   | 71.583    | 10.625  | 21.500  | 4.750   | 3.875    | 13.250  | 23.875  | 3.750   | 17.375  | 33.375   | 8.125   | 14.050    |
| Brown bullhead    | 17.824    | 32.000  | 10.875  | 5.375   | 17.875   | 15.000  | 14.875  | 9.375   | 6.000   | 2.750    | 6.250   | 12.038    |
| Channel catfish   | 0.069     | 0.000   | 0.125   | 0.125   | 0.000    | 0.375   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.063     |
| American eel      | 0.194     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Burbot            | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Trout-perch       | 78.532    | 13.000  | 5.500   | 12.750  | 14.375   | 9.750   | 4.000   | 14.250  | 19.000  | 32.125   | 18.625  | 14.338    |
| White perch       | 306.882   | 6.625   | 154.625 | 165.013 | 1929.950 | 475.900 | 880.563 | 338.925 | 845.013 | 1601.363 | 104.275 | 650.225   |
| White bass        | 1.509     | 0.125   | 3.000   | 1.625   | 3.625    | 2.000   | 6.000   | 0.250   | 1.000   | 13.375   | 3.875   | 3.488     |
| Sunfish           | 4.472     | 48.125  | 0.000   | 14.625  | 0.000    | 0.000   | 14.500  | 0.000   | 42.125  | 0.000    | 0.000   | 11.938    |
| Rock bass         | 0.236     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Pumpkinseed       | 26.421    | 21.750  | 5.125   | 1.875   | 4.125    | 1.750   | 1.125   | 0.875   | 0.500   | 0.250    | 0.375   | 3.775     |
| Bluegill          | 13.429    | 0.250   | 0.500   | 0.125   | 0.000    | 0.375   | 1.250   | 1.875   | 0.000   | 0.000    | 0.625   | 0.500     |
| Smallmouth bass   | 0.296     | 0.125   | 0.125   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.025     |
| Largemouth bass   | 0.157     | 0.125   | 0.375   | 0.250   | 0.625    | 0.375   | 0.000   | 0.125   | 0.625   | 0.000    | 1.500   | 0.400     |
| Black crappie     | 3.389     | 0.375   | 0.000   | 0.000   | 0.250    | 0.125   | 2.000   | 0.375   | 0.250   | 0.125    | 0.000   | 0.350     |
| Lepomis sp.       | 0.014     | 0.000   | 88.375  | 0.000   | 2.375    | 409.700 | 0.250   | 5.125   | 9.000   | 17.875   | 293.888 | 82.659    |
| Yellow perch      | 116.481   | 37.875  | 53.250  | 14.250  | 66.250   | 47.375  | 14.625  | 78.750  | 214.725 | 44.375   | 300.438 | 87.191    |
| Walleye           | 13.352    | 5.375   | 0.750   | 8.500   | 2.625    | 2.000   | 2.750   | 8.625   | 18.125  | 3.500    | 10.375  | 6.263     |
| Johnny darter     | 1.481     | 12.500  | 2.125   | 0.125   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 1.475     |
| Logperch          | 0.347     | 0.250   | 0.500   | 0.125   | 0.125    | 0.125   | 0.000   | 0.750   | 1.000   | 1.000    | 0.250   | 0.413     |
| Brook silverside  | 0.139     | 0.000   | 0.500   | 0.000   | 0.000    | 0.000   | 1.250   | 0.000   | 0.000   | 0.000    | 8.500   | 1.025     |
| Round goby        | 0.000     | 0.000   | 1.625   | 67.000  | 47.250   | 60.250  | 7.125   | 53.875  | 8.625   | 30.500   | 5.875   | 28.213    |
| Freshwater drum   | 23.412    | 163.750 | 58.250  | 20.875  | 4.375    | 214.763 | 87.000  | 830.063 | 25.000  | 31.000   | 53.375  | 148.845   |
| Sculpin sp.       | 0.019     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Total catch       | 1042      | 453     | 724     | 365     | 2691     | 1318    | 1161    | 1421    | 1570    | 2213     | 1385    | 1330      |
| Number of species | 19        | 20      | 22      | 20      | 17       | 19      | 19      | 19      | 19      | 17       | 20      | 19        |
| Number of trawls  |           | 8       | 8       | 8       | 8        | 8       | 8       | 8       | 8       | 8        | 8       |           |

TABLE 2.3.6. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Big Bay** (5 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                   |           |         |         |         |          | Ye       | ear      |         |         |          |         |           |
|-------------------|-----------|---------|---------|---------|----------|----------|----------|---------|---------|----------|---------|-----------|
|                   | 1992-2000 |         |         |         |          |          |          |         |         |          |         | 2001-2010 |
| Species           | mean      | 2001    | 2002    | 2003    | 2004     | 2005     | 2006     | 2007    | 2008    | 2009     | 2010    | mean      |
| Longnose gar      | 0.111     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.250   | 0.000   | 0.000    |         | 0.025     |
| Alewife           | 33.495    |         | 224.938 | 0.000   | 407.363  | 35.750   | 13.000   |         | 190.263 |          | 332.700 | 124.226   |
| Gizzard shad      | 228.178   | 0.000   | 52.250  | 23.250  | 58.375   | 25.875   | 2.250    | 2.250   | 68.738  | 0.000    |         | 29.920    |
| Rainbow smelt     | 0.039     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    |         | 0.000     |
| Northern pike     | 0.056     | 0.000   | 0.125   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    |         | 0.013     |
| White sucker      | 4.031     | 0.750   | 2.875   | 1.125   | 1.375    | 0.875    | 0.125    | 0.375   | 0.375   | 0.625    | 3.750   | 1.225     |
| Moxostoma sp.     | 0.007     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    |         | 0.000     |
| Common carp       | 0.545     | 0.250   | 0.000   | 0.500   | 0.375    | 0.250    | 0.875    | 0.125   | 0.375   | 0.000    | 1.000   | 0.375     |
| Emerald shiner    | 0.042     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.000     |
| Spottail shiner   | 16.069    | 12.125  | 63.625  | 8.875   | 20.250   | 56.250   | 18.625   | 15.375  | 10.625  | 19.500   | 37.625  | 26.288    |
| Brown bullhead    | 29.570    | 16.375  | 32.625  | 38.000  | 23.750   | 12.125   | 54.625   | 9.750   | 8.750   | 3.000    | 4.750   | 20.375    |
| Channel catfish   | 0.151     | 0.000   | 0.125   | 0.000   | 0.000    | 0.125    | 0.375    | 0.000   | 0.000   | 0.000    | 0.000   | 0.063     |
| Ictalurus sp.     | 0.000     | 0.375   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.038     |
| American eel      | 0.337     | 0.125   | 0.125   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.025     |
| Trout-perch       | 23.320    | 1.375   | 9.125   | 5.000   | 3.125    | 21.625   | 21.000   | 14.000  | 65.875  | 67.750   | 45.625  | 25.450    |
| White perch       | 446.613   | 18.250  | 793.025 | 145.125 | 1498.975 | 554.588  | 1252.238 | 363.425 | 456.700 | 1116.888 | 190.763 | 638.998   |
| White bass        | 1.221     | 0.000   | 2.125   | 0.000   | 0.250    | 2.625    | 3.875    | 0.250   | 0.750   | 8.250    | 0.375   | 1.850     |
| Sunfish           | 1.708     | 50.000  | 0.000   | 0.000   | 0.000    | 0.000    | 25.250   | 0.000   | 9.750   | 0.000    | 0.000   | 8.500     |
| Rock bass         | 0.000     | 0.000   | 0.125   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.013     |
| Pumpkinseed       | 18.612    | 83.875  | 64.125  | 67.625  | 36.625   | 3.750    | 6.875    | 1.875   | 5.750   | 12.125   | 5.875   | 28.850    |
| Bluegill          | 1.930     | 124.875 | 13.625  | 14.625  | 0.750    | 9.625    | 6.750    | 16.000  | 3.875   | 10.375   | 4.250   | 20.475    |
| Smallmouth bass   | 0.032     | 0.125   | 0.250   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.038     |
| Largemouth bass   | 0.000     | 0.000   | 0.250   | 0.000   | 0.250    | 0.000    | 0.000    | 0.000   | 0.125   | 1.500    | 1.625   | 0.375     |
| Black crappie     | 0.356     | 0.625   | 0.500   | 0.375   | 0.375    | 1.000    | 2.625    | 0.250   | 0.125   | 0.250    | 0.000   | 0.613     |
| Lepomis sp.       | 0.000     | 0.000   | 66.625  | 0.000   | 0.000    | 1060.175 | 0.000    | 4.125   | 56.475  | 41.500   | 170.450 | 139.935   |
| Yellow perch      | 62.998    | 381.125 | 153.463 | 107.650 | 200.250  | 90.613   | 99.388   | 33.750  | 660.600 | 197.775  | 184.238 | 210.885   |
| Walleye           | 10.485    | 7.500   | 6.125   | 19.250  | 16.875   | 6.500    | 8.125    | 8.750   | 28.125  | 10.750   | 7.250   | 11.925    |
| Johnny darter     | 0.037     | 1.250   | 0.250   | 0.000   | 0.000    | 0.000    | 0.000    | 0.000   | 0.000   | 0.000    | 0.000   | 0.150     |
| Logperch          | 0.053     | 0.125   | 0.000   | 0.250   | 0.000    | 0.000    | 0.125    | 0.250   | 3.250   | 2.250    | 0.000   | 0.625     |
| Brook silverside  | 0.069     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.125    | 0.000   | 0.000   | 0.000    | 0.375   | 0.050     |
| Round goby        | 0.000     | 0.000   | 0.125   | 1.375   | 15.750   | 9.500    | 4.750    | 50.413  | 1.125   | 0.625    | 0.375   | 8.404     |
| Freshwater drum   | 10.894    |         | 24.375  | 9.000   | 15.625   | 125.500  |          | 139.350 | 14.625  | 11.625   | 51.500  | 59.180    |
| Total catch       | 891       | 721     | 1511    | 442     | 2300     | 2017     | 1699     | 661     | 1586    | 1543     |         | 1359      |
| Number of species | 18        | 18      | 23      | 15      | 17       | 18       | 20       | 19      | 20      | 17       | 18      | 19        |
| Number of trawls  |           | 8       | 8       | 8       | 8        | 8        | 8        | 8       | 8       | 8        | 8       | -         |

TABLE 2.3.7. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Deseronto** (5 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                   |           |         |         |         |          | Ye       | ar      |          |         |         |         |           |
|-------------------|-----------|---------|---------|---------|----------|----------|---------|----------|---------|---------|---------|-----------|
|                   | 1992-2000 |         |         |         |          |          |         |          |         |         |         | 2001-2010 |
| Species           | mean      | 2001    | 2002    | 2003    | 2004     | 2005     | 2006    | 2007     | 2008    | 2009    | 2010    | mean      |
| Longnose gar      | 0.014     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   |         | 0.000   | 0.000     |
| Alewife           |           | 180.063 |         | 277.350 | 55.375   | 54.213   |         | 1037.375 |         |         | 447.013 | 243.861   |
| Gizzard shad      | 54.322    |         | 20.875  | 11.875  | 1.375    | 22.000   | 62.100  |          | 109.375 |         | 20.500  | 35.689    |
| Rainbow smelt     | 0.028     | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000     |
| Northern pike     | 0.028     | 0.000   | 0.000   | 0.125   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.013     |
| White sucker      | 1.028     | 0.625   | 0.375   | 1.250   | 1.250    | 0.125    | 0.375   | 0.375    | 0.625   | 2.625   | 0.125   | 0.775     |
| Common carp       | 0.278     | 0.000   | 0.000   | 0.000   | 0.000    | 0.125    | 0.000   | 0.000    | 0.000   | 0.000   | 0.125   | 0.025     |
| Spottail shiner   | 29.194    | 25.250  | 25.000  | 35.625  | 1.500    | 18.875   | 54.750  | 28.750   | 104.125 | 38.625  | 18.000  | 35.050    |
| Brown bullhead    | 24.250    | 69.250  | 10.625  | 21.500  | 37.000   | 12.500   | 11.625  | 18.125   | 2.500   | 4.000   | 1.000   | 18.813    |
| Channel catfish   | 0.083     | 0.000   | 0.000   | 0.000   | 0.125    | 0.250    | 0.125   | 0.000    | 0.000   | 0.000   | 0.000   | 0.050     |
| Ictalurus sp.     | 0.000     | 0.125   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.013     |
| American eel      | 0.861     | 0.000   | 0.125   | 0.000   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.013     |
| Trout-perch       | 35.125    | 4.750   | 7.500   | 0.125   | 4.500    | 6.000    | 12.375  | 18.375   | 550.213 | 226.813 | 1.750   | 83.240    |
| White perch       | 273.129   | 10.250  | 194.863 | 306.238 | 3075.588 | 237.588  | 793.925 | 226.200  | 298.113 | 811.600 | 25.250  | 597.961   |
| White bass        | 0.403     | 0.000   | 0.000   | 0.500   | 1.625    | 1.250    | 4.250   | 0.375    | 0.000   | 1.250   | 0.250   | 0.950     |
| Sunfish           | 0.125     | 0.375   | 0.000   | 0.000   | 0.000    | 0.000    | 1.375   | 0.000    | 0.125   | 0.000   | 0.000   | 0.188     |
| Rock bass         | 0.014     | 0.125   | 1.750   | 0.250   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.500   | 0.250   | 0.288     |
| Pumpkinseed       | 15.042    | 118.088 | 17.500  | 67.500  | 19.500   | 14.750   | 15.500  | 19.125   | 11.500  | 30.500  | 11.000  | 32.496    |
| Bluegill          | 0.014     | 0.500   | 0.125   | 4.500   | 0.000    | 0.125    | 0.875   | 0.375    | 0.000   | 0.250   | 1.250   | 0.800     |
| Smallmouth bass   | 0.500     | 0.500   | 0.125   | 1.000   | 1.250    | 0.625    | 0.250   | 0.000    | 0.000   | 0.250   | 0.000   | 0.400     |
| Largemouth bass   | 0.083     | 0.000   | 1.125   | 0.000   | 0.250    | 1.125    | 2.125   | 0.000    | 0.125   | 0.375   | 2.750   | 0.788     |
| Black crappie     | 0.028     | 0.125   | 0.625   | 0.125   | 0.000    | 1.750    | 1.375   | 4.875    | 0.000   | 3.375   | 0.125   | 1.238     |
| Lepomis sp.       | 0.000     | 0.000   | 0.000   | 0.000   | 0.000    | 483.675  | 0.000   | 1.000    | 0.250   | 0.000   | 1.875   | 48.680    |
| Yellow perch      | 320.919   | 412.700 | 555.388 | 683.425 | 152.138  | 1030.913 | 638.313 | 1087.100 | 531.750 | 219.300 | 66.225  | 537.725   |
| Walleye           | 17.486    | 12.500  | 2.875   | 7.500   | 15.125   | 5.000    | 5.250   | 9.875    | 19.875  | 15.875  | 1.875   | 9.575     |
| Johnny darter     | 0.403     | 0.625   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.063     |
| Logperch          | 0.278     | 1.000   | 0.125   | 0.375   | 0.000    | 3.625    | 0.125   | 0.750    | 2.875   | 23.625  | 0.250   | 3.275     |
| Brook silverside  | 0.306     | 0.000   | 0.000   | 0.000   | 0.000    | 0.750    | 0.000   | 0.000    | 0.000   | 0.000   | 3.000   | 0.375     |
| Round goby        | 0.000     | 1.250   | 11.500  | 16.125  | 20.625   | 117.300  | 4.625   | 4.250    | 4.500   | 2.750   | 1.625   | 18.455    |
| Freshwater drum   | 9.111     | 16.500  | 1.875   | 15.375  | 15.625   | 8.250    | 22.000  | 24.000   | 10.125  | 11.500  | 0.875   | 12.613    |
| Total catch       | 904       | 887     | 900     | 1451    | 3403     | 2021     | 1738    | 2510     | 1863    | 1457    | 605     | 1683      |
| Number of species | 16        | 20      | 19      | 19      | 16       | 22       | 20      | 17       | 16      | 19      | 21      | 19        |
| Number of trawls  |           | 8       | 8       | 8       | 8        | 8        | 8       | 8        | 8       | 8       | 8       |           |

TABLE 2.3.8. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Hay Bay** (7 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                      |           |         |         |         |         | Y       | ear     |         |         |         |         |           |
|----------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|
|                      | 1992-2000 |         |         |         |         |         |         |         |         |         |         | 2001-2010 |
| Species              | mean      | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | = = = ; | 2008    | 2009    | 2010    | mean      |
| Alewife              | 204.132   |         | 21.125  | 1.750   | 67.063  | 72.088  |         | 695.188 | 631.613 |         |         | 413.000   |
| Gizzard shad         | 10.153    | 2.625   | 0.125   | 0.000   | 0.125   | 0.000   | 0.375   | 0.125   | 7.000   | 0.750   | 4.000   | 1.513     |
| Lake whitefish       | 0.019     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000     |
| Cisco (Lake herring) | 0.056     | 1.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.100     |
| Rainbow smelt        | 3.958     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.375   | 0.000   | 0.000   | 0.050     |
| Northern pike        | 0.069     | 0.000   | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.125   | 0.000   | 0.038     |
| White sucker         | 3.579     | 3.500   | 0.125   | 5.875   | 8.250   | 0.000   | 0.625   | 4.875   | 3.000   | 0.000   | 3.625   | 2.988     |
| Common carp          | 0.343     | 0.250   | 0.000   | 0.000   | 0.000   | 0.875   | 0.000   | 0.000   | 0.750   | 0.125   | 0.000   | 0.200     |
| Golden shiner        | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.013     |
| Common shiner        | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 0.000   | 0.013     |
| Spottail shiner      | 32.120    | 63.513  | 54.000  | 53.250  | 64.375  | 79.113  | 133.950 | 188.575 | 47.750  | 46.500  | 53.375  | 78.440    |
| Brown bullhead       | 15.046    | 32.750  | 15.750  | 8.000   | 10.375  | 10.500  | 15.000  | 8.875   | 0.750   | 3.500   | 2.500   | 10.800    |
| Channel catfish      | 0.028     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000     |
| American eel         | 1.579     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000     |
| Burbot               | 0.023     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000     |
| Trout-perch          | 65.125    | 5.750   | 2.750   | 3.750   | 77.500  | 1.750   | 3.000   | 59.500  | 6.625   | 3.750   | 4.375   | 16.875    |
| White perch          | 94.664    | 9.250   | 132.563 | 14.750  | 495.163 | 24.625  | 504.113 | 27.500  | 163.738 | 167.700 | 54.875  | 159.428   |
| White bass           | 0.185     | 0.000   | 0.000   | 1.750   | 0.125   | 0.125   | 1.375   | 1.375   | 0.875   | 0.500   | 2.000   | 0.813     |
| Sunfish              | 0.056     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000     |
| Rock bass            | 0.028     | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.025     |
| Pumpkinseed          | 10.231    | 19.625  | 11.875  | 0.750   | 4.625   | 1.125   | 44.500  | 11.375  | 8.625   | 0.250   | 13.250  | 11.600    |
| Bluegill             | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 3.625   | 0.125   | 0.250   | 0.413     |
| Smallmouth bass      | 0.000     | 0.000   | 1.250   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125     |
| Largemouth bass      | 0.000     | 0.250   | 1.750   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.375   | 1.375   | 2.125   | 0.588     |
| Black crappie        | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 1.375   | 0.875   | 0.000   | 0.000   | 0.000   | 0.000   | 0.225     |
| Lepomis sp.          | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 13.375  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 1.338     |
| Yellow perch         |           | 726.475 | 856.588 | 119.200 | 551.850 | 278.638 | 580.700 | 906.500 | 138.063 | 146.038 | 206.663 | 451.071   |
| Walleye              | 7.333     | 7.125   | 3.250   | 1.750   | 3.125   | 4.125   | 7.125   | 8.500   | 13.375  | 5.000   | 8.500   | 6.188     |
| Johnny darter        | 0.079     | 0.000   | 1.750   | 0.000   | 0.000   | 0.000   | 0.000   | 0.125   | 0.000   | 0.000   | 0.000   | 0.188     |
| Logperch             | 0.046     | 0.250   | 0.000   | 0.000   | 0.125   | 0.375   | 0.250   | 1.250   | 0.250   | 0.250   | 0.125   | 0.288     |
| Brook silverside     | 0.000     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.875   | 0.088     |
| Round goby           | 0.000     | 0.125   | 1.250   | 14.250  | 3.500   | 40.125  | 6.000   | 17.125  | 11.375  | 1.625   | 2.375   | 9.775     |
| Freshwater drum      | 2.773     | 4.375   | 4.875   | 6.875   | 10.500  | 16.375  | 39.125  | 6.000   | 5.000   | 5.125   | 11.125  | 10.938    |
| Slimy sculpin        | 0.009     | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |         | 0.000   | 0.000   | 0.000   | 0.000     |
| Total catch          | 824       | 1443    | 1109    | 232     | 1297    | 545     | 1732    |         | 1043    | 1096    | 1338    | 1177      |
| Number of species    | 15        | 16      | 15      | 13      | 15      | 15      | 17      | 17      | 18      | 18      | 18      | 16        |
| Number of trawls     | -         | 8       | 8       | 8       | 8       | 8       | 8       | 8       | 8       | 8       | 8       |           |

TABLE 2.3.9. Species-specific catch per trawl (6 min duration; 1/4 mile) by year in the fish community index bottom trawling program at **Conway** (24 m depth), Bay of Quinte. Catches are the mean number of fish observed at each site for the number of trawls indicated. Total catch and number of species caught are indicated.

|                        |           |         |         |         |        | Ye      | ear     |         |         |        |         |           |
|------------------------|-----------|---------|---------|---------|--------|---------|---------|---------|---------|--------|---------|-----------|
|                        | 1992-2000 |         |         |         |        |         |         |         |         |        |         | 2001-2010 |
| Species                | mean      | 2001    | 2002    | 2003    | 2004   | 2005    | 2006    | 2007    | 2008    | 2009   | 2010    | mean      |
| Silver lamprey         | 0.000     | 0.000   | 0.000   | 0.000   | 0.083  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.008     |
| Alewife                | 121.966   | 0.000   | 0.000   | 2.250   | 1.917  | 0.417   | 9.667   | 0.083   | 214.558 | 1.583  | 0.333   | 23.081    |
| Gizzard shad           | 0.000     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 1.167   | 0.000   | 0.000   | 0.000  | 0.000   | 0.117     |
| Chinook salmon         | 0.028     | 0.000   | 0.000   | 0.000   | 0.000  | 0.167   | 0.083   | 0.000   | 0.000   | 0.000  | 0.000   | 0.025     |
| Brown trout            | 0.000     | 0.000   | 0.125   | 0.167   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.029     |
| Lake trout             | 0.014     | 0.000   | 0.250   | 0.000   | 0.417  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.067     |
| Lake whitefish         | 13.208    | 1.000   | 1.000   | 8.083   | 0.750  | 3.083   | 3.833   | 4.750   | 0.250   | 0.333  | 0.333   | 2.342     |
| Cisco (Lake herring)   | 2.301     | 0.000   | 0.250   | 3.000   | 0.083  | 7.667   | 4.500   | 2.000   | 0.167   | 0.000  | 6.333   | 2.400     |
| Coregonus sp.          | 0.000     | 0.000   | 0.000   | 0.083   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.008     |
| Rainbow smelt          | 112.713   | 0.000   | 39.625  | 10.167  | 3.583  | 6.750   | 0.083   | 25.167  | 1.083   | 0.083  | 0.000   | 8.654     |
| White sucker           | 4.412     | 134.825 | 28.750  | 6.667   | 7.417  | 4.750   | 3.167   | 11.250  | 0.500   | 0.000  | 0.167   | 19.749    |
| Moxostoma sp.          | 0.000     | 0.125   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.013     |
| Spottail shiner        | 0.000     | 0.625   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.063     |
| American eel           | 0.056     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Burbot                 | 0.000     | 0.000   | 0.000   | 0.000   | 0.083  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.008     |
| Threespine stickleback | 0.019     | 0.000   | 0.000   | 0.083   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.008     |
| Trout-perch            | 132.800   | 139.438 | 58.225  | 53.667  | 43.333 | 12.250  | 0.500   | 1.000   | 13.000  | 0.083  | 0.000   | 32.150    |
| White perch            | 0.116     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 3.000   | 0.000   | 0.000   | 0.250  | 0.167   | 0.342     |
| White bass             | 0.000     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.833   | 0.000   | 0.000   | 0.000  | 0.000   | 0.083     |
| Rock bass              | 0.028     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Yellow perch           | 12.597    | 134.700 | 181.238 | 178.133 | 58.667 | 53.750  | 146.567 | 20.000  | 108.975 | 8.250  | 56.950  | 94.723    |
| Walleye                | 2.764     | 1.250   | 0.000   | 0.250   | 1.000  | 0.083   | 0.417   | 0.417   | 0.083   | 0.000  | 0.333   | 0.383     |
| Johnny darter          | 0.306     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Round goby             | 0.000     | 0.000   | 0.500   | 282.225 | 79.167 | 127.208 | 40.833  | 173.192 | 89.717  | 80.767 | 146.975 | 102.058   |
| Freshwater drum        | 0.000     | 0.125   | 0.000   | 0.250   | 0.000  | 0.083   | 0.500   | 0.000   | 0.083   | 0.000  | 0.000   | 0.104     |
| Sculpin sp.            | 0.009     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Mottled sculpin        | 0.009     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Slimy sculpin          | 0.079     | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  | 0.000   | 0.000     |
| Total catch            | 403       | 412     | 310     | 545     | 197    | 216     | 215     | 238     | 428     | 91     | 212     | 286       |
| Number of species      | 9         | 8       | 9       | 13      | 12     | 11      | 14      | 9       | 10      | 7      | 8       | 10        |
| Number of trawls       |           | 8       | 8       | 12      | 12     | 12      | 12      | 12      | 12      | 12     | 12      |           |

Island in eastern Lake Ontario, 1992-2010. Four replicate trawls on

each of two to four visits during August and early September were

made at each site. Distances of each trawl drag were 1/4 mile for

|      | Conway | N  | EB03<br>(Timber<br>Island) | N  |
|------|--------|----|----------------------------|----|
| 1992 | 23.4   | 8  | 0.9                        | 12 |
| 1993 | 3.1    | 8  | 4.7                        | 12 |
| 1994 | 40.5   | 8  | 79.7                       | 8  |
| 1995 | 27.1   | 8  | 17.1                       | 8  |
| 1996 | 2.6    | 8  | 0.8                        | 8  |
| 1997 | 5.1    | 8  | 6.0                        | 8  |
| 1998 | 0.4    | 8  | 0.0                        | 8  |
| 1999 | 0.0    | 8  | 0.0                        | 8  |
| 2000 | 0.4    | 8  | 0.0                        | 8  |
| 2001 | 0.1    | 8  | 0.0                        | 8  |
| 2002 | 0.1    | 8  | 0.0                        | 8  |
| 2003 | 8.1    | 12 | 44.9                       | 16 |
| 2004 | 0.0    | 12 | 2.1                        | 12 |
| 2005 | 2.8    | 12 | 49.8                       | 12 |
| 2006 | 2.4    | 12 | 3.6                        | 8  |
| 2007 | 0.8    | 12 | 0.3                        | 12 |
| 2008 | 0.1    | 12 | 0.0                        | 8  |
| 2009 | 0.3    | 12 | 0.1                        | 12 |
| 2010 | 0.3    | 12 | 4.7                        | 12 |

TABLE 2.3.11. Mean catch-per-trawl of **age-0 lake herring** at Conway in the lower Bay of Quinte, 1992-2010. Four replicate trawls on each of two to four visits during August and early September were made at the Conway site. Distances of each trawl drag was 1/4 mile.

|      | Conway | Ν  |
|------|--------|----|
| 1992 | 0.0    | 8  |
| 1993 | 1.5    | 8  |
| 1994 | 7.7    | 8  |
| 1995 | 1.3    | 8  |
| 1996 | 0.0    | 8  |
| 1997 | 0.0    | 8  |
| 1998 | 0.1    | 8  |
| 1999 | 0.0    | 8  |
| 2000 | 0.0    | 8  |
| 2001 | 0.0    | 8  |
| 2002 | 0.1    | 8  |
| 2003 | 2.8    | 12 |
| 2004 | 0.1    | 12 |
| 2005 | 7.2    | 12 |
| 2006 | 4.5    | 12 |
| 2007 | 2.0    | 12 |
| 2008 | 0.2    | 12 |
| 2009 | 0.0    | 12 |
| 2010 | 6.33   | 12 |

TABLE 2.3.12. Mean catch-per-trawl of **age-0 yellow perch** at six Bay of Quinte sites, 1992-2010. Four replicate trawls on each of two to three visits during August and early September were made at each site. Distance of each trawl drag was 1/4 mile.

|      | Trenton | Belleville | Big Bay | Deseronto | Hay Bay | Conway | Mean  | Number<br>of trawls |
|------|---------|------------|---------|-----------|---------|--------|-------|---------------------|
| 1992 | 3.1     | 1.3        | 0.4     | 0.1       | 0.5     | 0.0    | 0.9   | 48                  |
| 1993 | 203.7   | 14.0       | 0.4     | 36.3      | 1.6     | 0.3    | 42.7  | 48                  |
| 1994 | 526.6   | 50.6       | 10.3    | 101.5     | 29.3    | 6.9    | 120.8 | 48                  |
| 1995 | 730.4   | 101.1      | 9.5     | 764.5     | 268.9   | 0.0    | 312.4 | 48                  |
| 1996 | 2.6     | 2.9        | 4.3     | 2.5       | 8.5     | 0.1    | 3.5   | 48                  |
| 1997 | 302.0   | 4.0        | 36.0    | 135.0     | 526.0   | 0.0    | 167.2 | 48                  |
| 1998 | 13.1    | 14.0       | 11.5    | 0.1       | 2.9     | 0.0    | 7.0   | 48                  |
| 1999 | 24.5    | 7.0        | 4.9     | 638.7     | 900.3   | 0.0    | 262.6 | 48                  |
| 2000 | 0.0     | 5.8        | 5.4     | 0.8       | 6.0     | 0.3    | 3.0   | 48                  |
| 2001 | 158.0   | 27.6       | 16.8    | 71.8      | 127.0   | 0.0    | 66.9  | 48                  |
| 2002 | 0.0     | 0.3        | 9.2     | 141.8     | 241.1   | 0.0    | 65.4  | 48                  |
| 2003 | 228.5   | 3.8        | 0.9     | 9.2       | 1.6     | 0.5    | 40.8  | 52                  |
| 2004 | 0.0     | 0.9        | 4.5     | 8.4       | 18.0    | 0.0    | 5.3   | 52                  |
| 2005 | 202.8   | 37.5       | 24.8    | 444.7     | 61.9    | 0.0    | 128.6 | 52                  |
| 2006 | 3.8     | 3.5        | 51.7    | 532.8     | 306.0   | 0.2    | 149.7 | 52                  |
| 2007 | 284.3   | 70.9       | 29.6    | 883.5     | 776.0   | 0.1    | 340.7 | 52                  |
| 2008 | 123.8   | 153.4      | 114.5   | 263.6     | 12.4    | 0.0    | 111.3 | 52                  |
| 2009 | 101.3   | 29.8       | 130.2   | 81.1      | 14.3    | 0.0    | 59.4  | 52                  |
| 2010 | 216.8   | 280.3      | 167.0   | 34.6      | 148.8   | 0.0    | 141.2 | 52                  |

TABLE 2.3.13. Mean catch-per-trawl of **age-0 walleye** at six Bay of Quinte sites, 1992-2010. Four replicate trawls on each of two to three visits during August and early September were made at each site. Distance of each trawl drag was 1/4 mile.

|      | Trenton | Belleville | Big<br>Bay | Deseronto | Hay<br>Bay | Conway | Mean | Number<br>of trawls |
|------|---------|------------|------------|-----------|------------|--------|------|---------------------|
| 1992 | 6.8     | 12.4       | 14.0       | 37.9      | 6.1        | 0.8    | 13.0 | 48                  |
| 1993 | 8.8     | 16.0       | 5.0        | 11.3      | 1.1        | 11.9   | 9.0  | 48                  |
| 1994 | 17.0    | 21.0       | 15.0       | 23.8      | 11.5       | 12.5   | 16.8 | 48                  |
| 1995 | 14.1    | 8.3        | 2.6        | 8.3       | 5.5        | 0.9    | 6.6  | 48                  |
| 1996 | 4.3     | 7.6        | 4.9        | 1.1       | 0.0        | 1.1    | 3.2  | 48                  |
| 1997 | 2.8     | 7.6        | 6.1        | 0.3       | 0.1        | 0.0    | 2.8  | 48                  |
| 1998 | 0.1     | 0.4        | 0.6        | 0.1       | 0.0        | 0.0    | 0.2  | 48                  |
| 1999 | 1.1     | 0.4        | 0.4        | 1.4       | 9.1        | 0.1    | 2.1  | 48                  |
| 2000 | 0.0     | 3.8        | 1.0        | 0.0       | 0.1        | 0.0    | 0.8  | 48                  |
| 2001 | 9.5     | 4.5        | 4.8        | 6.8       | 3.3        | 0.1    | 4.8  | 48                  |
| 2002 | 0.0     | 0.0        | 1.1        | 0.1       | 0.0        | 0.0    | 0.2  | 48                  |
| 2003 | 10.3    | 8.3        | 16.8       | 1.9       | 0.4        | 0.0    | 6.3  | 52                  |
| 2004 | 0.0     | 0.6        | 11.4       | 1.4       | 0.9        | 0.0    | 2.4  | 52                  |
| 2005 | 0.8     | 1.4        | 3.8        | 1.8       | 1.1        | 0.0    | 1.5  | 52                  |
| 2006 | 0.0     | 1.0        | 3.0        | 2.8       | 5.9        | 0.3    | 2.1  | 52                  |
| 2007 | 4.1     | 6.1        | 5.4        | 5.6       | 5.6        | 0.2    | 4.5  | 52                  |
| 2008 | 5.5     | 17.6       | 20.5       | 14.6      | 12.4       | 0.0    | 11.8 | 52                  |
| 2009 | 2.5     | 2.3        | 7.6        | 1.0       | 2.9        | 0.0    | 2.7  | 52                  |
| 2010 | 1.4     | 4.6        | 4.5        | 1.0       | 3.6        | 0.0    | 2.5  | 52                  |

TABLE 2.3.14. Age distribution of 246 **walleye** sampled from summer bottom trawls, Bay of Quinte, 2010. Also shown are mean fork length and mean weight. Fish of less than 160 mm fork length were assigned an age of 0, fish between 160 and 225 mm were aged using scales; and those over 225 mm fork length were aged using otoliths.

|                           | Age (years) / Year class |      |      |      |      |      |      |      |      |      |      |      |       |
|---------------------------|--------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 0 1 2 3 4 5 6 7 8 9 10 11 |                          |      |      |      |      |      |      |      |      |      |      |      |       |
|                           | 2010                     | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | Total |
| Bay of Quinte             | 120                      | 47   | 59   | 14   | 3    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 246   |
| Mean fork length (mm)     | 143                      | 239  | 323  | 431  | 425  | 470  |      |      | 578  |      |      | 618  |       |
| Mean weight (g)           | 29                       | 139  | 359  | 890  | 904  | 988  |      |      | 2351 |      |      | 3057 |       |

# 2.4 Lake-wide Hydroacoustic Assessment of Prey Fish

The hydroacoustic survey of prey fish was not conducted in 2010 due to weather and scheduling problems.

#### 2.5 Nearshore Community Index Netting

The provincial standard nearshore community index netting program (NSCIN) was initiated on the upper Bay of Quinte (Trenton to Deseronto) in 2001, and was expanded to include the lower Bay of Ouinte (Deseronto to Lake Ontario) in 2002. Both upper and lower Bay of Quinte were sampled from 2002-2005. In 2006, the NSCIN program was conducted on Hamilton Harbour and the Toronto waterfront area thanks to partnerships developed with the Department of Fisheries and Oceans Canada and the Toronto Region Conservation Authority. In 2007, NSCIN was conducted in five areas: Lake St. Francis (St. Lawrence River), the upper Bay of Ouinte, East and West Lakes (two Lake Ontario embayments on the southwest side of Prince Edward County), and the Toronto waterfront area. In 2008, NSCIN was conducted in five areas: Lake St. Francis (St. Lawrence River), the upper Bay of Quinte, Weller's Bay, Presqu'ile Bay, and Hamilton Harbour. In 2009, five areas were completed: upper Bay of Quinte, lower Bay of Quinte, Prince Edward Bay, North Channel/Kingston, and the Thousand Islands. In 2010, three areas were completed: Hamilton Harbour, the Toronto Waterfront, and the upper Bay of Quinte (Fig. 2.5.1).

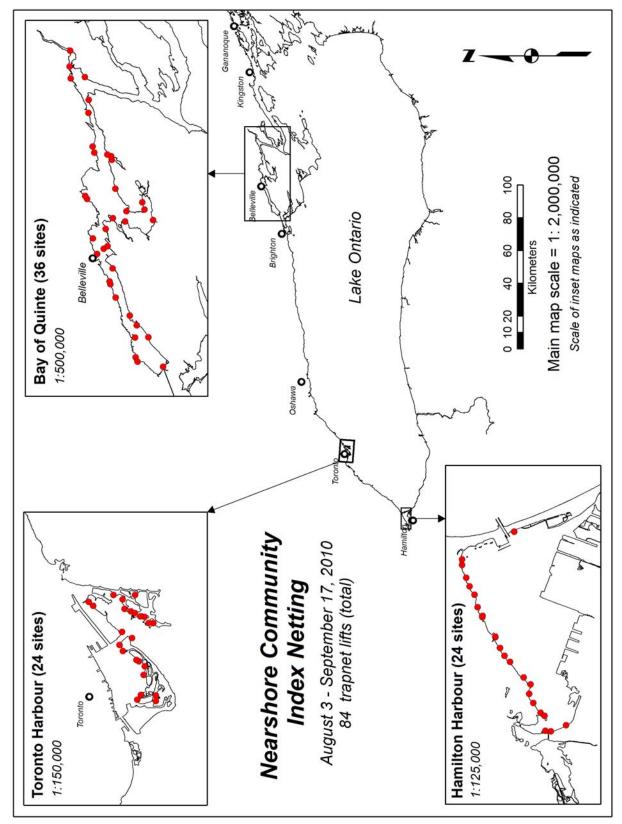
The NSCIN program utilized 6-foot trap nets and was designed to evaluate the abundance and other biological attributes of fish species that inhabit the littoral area. Suitable trap net sites were chosen from randomly selected UTM grids that contained shoreline in the area netted.

#### Hamilton Harbour

Twenty-four trap net sites were sampled on Hamilton Harbour from 3 Aug-12 Sep with water temperatures ranging from 21.5-25.4 °C (Table 2.5.1). More than 14,000 fish comprising 22 species were caught (Table 2.5.2). The most abundant species by number were brown bullhead (11,584), white perch (2,025), bluegill (218), channel catfish (192), and yellow perch (100). Of note was the capture of a spotted gar, a species listed as threatened both Provincially and Federally (see Section 8.1). Although the total number of fish

and species caught are relatively high in Hamilton Harbour, the species evenness and composition appears to reflect degraded environmental conditions. For example, the high turbidity tolerant ictalurids (brown bullhead and channel catfish) comprise over 80% of the fish community by number. Also a large component of the fish community is comprised of nonnative species such as white perch, goldfish, and carp.

#### Toronto Waterfront


Twenty-four trap net sites were sampled on the Toronto Waterfront from 30 Aug-10 Sep with water temperatures ranging from 11.1-24.5 °C (Table 2.5.1). Just over 300 fish comprising 20 species were caught (Table 2.5.2). The most abundant species by number were brown bullhead (202), pumpkinseed (184), common carp (114), yellow perch (63), and rock bass (62). The most abundant piscivores were northern pike (33) and largemouth bass (33). Overall catches were low at the Toronto Waterfront. Catches were likely impacted by cold water intrusions from Lake Ontario. One-half of the trap net sets experienced water temperatures less than 18 °C while the other half of the sets were all greater than or equal to 23 °C. Common carp abundance is relatively high.

#### Upper Bay of Quinte

Thirty-six trap net sites were sampled on the upper Bay of Quinte from 30 Aug-17 Sep with water temperatures ranging from 16.0-24.0 °C (Table 2.5.1). More than 4,800 fish comprising 21 species were captured (Table 2.5.2). The most abundant species by number were bluegill (2,214), pumpkinseed (1,047), brown bullhead (380), black crappie (271), yellow perch (220), and largemouth bass (153). Two species of redhorse were caught silver (16) and shorthead (2).

#### **Piscivore Biomass**

Trophic structure is an indicator of general health of a fish community. A proportion of the fish community assemblage comprised of piscivores greater than 0.20 (biomass) reflects a healthy trophic structure. The proportion of piscivore biomass was 0.06, 0.15 and





|                                                 |                  | Hamilton<br>Harbour | Toronto<br>Waterfront | Upper Bay of<br>Quinte |
|-------------------------------------------------|------------------|---------------------|-----------------------|------------------------|
| Survey dates                                    |                  | 3 Aug-12 Sep        | 30 Aug-10 Sep         | 30 Aug-17 Sep          |
| Water temperature (°C)                          |                  | 21.5-25.4 °C        | 11.1-24.5°C           | 16.0-24.0 °C           |
| No. of trapnet lifts<br>No. sites by depth (m): |                  | 24                  | 24                    | 36                     |
|                                                 | Target (2-2.5 m) | 5                   | 8                     | 12                     |
|                                                 | > Target         | 1                   | 11                    | 11                     |
|                                                 | < Target         | 18                  | 5                     | 13                     |
| No. sites by substrate:                         |                  |                     |                       |                        |
|                                                 | Hard             | 5                   | 6                     | 17                     |
|                                                 | Soft             | 19                  | 18                    | 19                     |
| No. sites by cover:                             |                  |                     |                       |                        |
|                                                 | None             | 1                   | 2                     | 1                      |
|                                                 | 1-25%            | 8                   | 9                     | 14                     |
|                                                 | 25-75%           | 15                  | 13                    | 12                     |
|                                                 | >75%             | 0                   | 0                     | 9                      |

TABLE 2.5.1. Survey information for the 2010 NSCIN trap net program on Hamilton Harbour, the Toronto Waterfront, and the upper Bay of Quinte.

0.30 in Hamilton Harbour, the Toronto Waterfront and the upper Bay of Quinte, respectively (Fig. 2.5.2).

Status of Selected Species

#### Northern pike

Northern pike were most abundant in the Toronto Waterfront and least abundant in the upper Bay of Quinte (Table 2.5.2). Age-2 pike were abundant in Hamilton Harbour (Table 2.5.3). Year-class strength appears to be consistent at the Toronto Waterfront. The oldest pike were found on the Bay of Quinte.

#### Pumpkinseed

Pumpkinseed were most abundant in the upper Bay of Quinte and least abundant in Hamilton Harbour (Table 2.5.2). The oldest pumpkinseed and the most year-classes of pumpkinseed were found on the upper Bay of Quinte (Table 2.5.4).

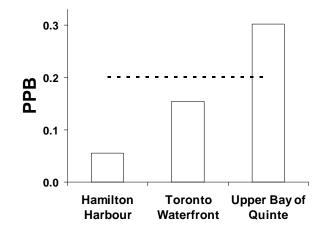



FIG. 2.5.2. Proportion of total fish community biomass represented by piscivore species (**PPB**) in the nearshore trap net surveys of Hamilton Harbour, the Toronto Waterfront and the upper Bay of Quinte. A PPB>0.20 is indicative of a balanced trophic structure (depicted by a dashed line). Piscivore species included longnose gar, bowfin, northern pike, smallmouth bass, largemouth bass, and walleye.

|                    | Ha       | amilton Harl | oour |      | То         | ronto Water | front |      | Upj      | per Bay of Q | uinte |      |
|--------------------|----------|--------------|------|------|------------|-------------|-------|------|----------|--------------|-------|------|
|                    |          | ~ .          |      | Mean |            |             |       | Mean |          | ~ .          |       | Mean |
|                    |          |              |      |      | Arithmetic |             |       | •    |          |              |       |      |
|                    | mean CUE | mean CUE     | (%)  | (mm) | mean CUE   | mean CUE    | (%)   | (mm) | mean CUE | mean CUE     | (%)   | (mm) |
| Longnose gar       | 0.280    | 0.187        | 42   | 733  |            |             |       |      | 1.556    | 0.478        | 35    | 782  |
| Spotted gar        | 0.042    | 0.029        | 100  | 500  |            |             |       |      |          |              |       |      |
| Bowfin             | 2.417    | 1.527        | 17   | 592  | 0.458      | 0.266       | 40    | 565  | 0.806    | 0.525        | 22    | 562  |
| Alewife            |          |              |      |      | 0.417      | 0.221       | 49    | 137  |          |              |       |      |
| Gizzard shad       | 2.375    | 0.738        | 33   | 148  | 0.042      | 0.029       | 100   | 430  | 0.639    | 0.363        | 28    | 187  |
| Rainbow trout      |          |              |      |      | 0.042      | 0.029       | 100   | 290  |          |              |       |      |
| Northern pike      | 1.083    | 0.697        | 24   | 629  | 1.375      | 0.686       | 30    | 686  | 0.833    | 0.559        | 20    | 586  |
| White sucker       | 0.458    | 0.238        | 46   | 356  | 2.292      | 0.992       | 27    | 475  | 0.444    | 0.339        | 22    | 416  |
| Silver redhorse    |          |              |      |      |            |             |       |      | 0.444    | 0.226        | 39    | 475  |
| Shorthead redhorse | 0.250    | 0.119        | 70   | 492  |            |             |       |      | 0.056    | 0.039        | 70    | 370  |
| Goldfish           | 2.708    | 1.609        | 19   | 393  | 0.042      | 0.029       | 100   | 400  |          |              |       |      |
| Common carp        | 2.200    | 1.298        | 19   | 625  | 4.750      | 2.494       | 16    | 643  | 0.333    | 0.184        | 41    | 603  |
| Golden shiner      |          |              |      |      |            |             |       |      | 0.056    | 0.039        | 70    | 145  |
| Brown bullhead     | 482.667  | 66.050       | 9    | 254  | 8.417      | 3.604       | 17    | 290  | 10.556   | 4.669        | 11    | 278  |
| Channel catfish    | 8.000    | 2.153        | 24   | 473  | 0.167      | 0.091       | 73    | 623  | 0.528    | 0.333        | 28    | 598  |
| White perch        | 84.375   | 40.172       | 7    | 184  | 0.250      | 0.175       | 42    | 232  | 1.694    | 0.600        | 30    | 223  |
| White bass         | 1.458    | 0.481        | 42   | 255  | 0.042      | 0.029       | 100   | 260  |          |              |       |      |
| Rock bass          | 1.480    | 0.804        | 25   | 189  | 2.583      | 1.348       | 21    | 164  | 2.444    | 1.148        | 19    | 177  |
| Pumpkinseed        | 3.333    | 1.256        | 25   | 126  | 7.667      | 2.343       | 23    | 113  | 29.083   | 9.191        | 10    | 156  |
| Bluegill           | 9.080    | 3.450        | 18   | 156  | 1.125      | 0.359       | 51    | 163  | 61.500   | 42.837       | 4     | 150  |
| Smallmouth bass    | 0.125    | 0.091        | 55   | 310  | 0.083      | 0.047       | 100   | 475  | 0.444    | 0.151        | 57    | 258  |
| Largemouth bass    | 0.333    | 0.245        | 33   | 255  | 1.375      | 0.505       | 39    | 220  | 4.250    | 2.579        | 12    | 236  |
| Black crappie      | 0.417    | 0.303        | 31   | 210  | 0.125      | 0.091       | 55    | 227  | 7.528    | 5.126        | 8     | 209  |
| Yellow perch       | 4.160    | 0.982        | 34   | 209  | 2.625      | 1.304       | 23    | 178  | 6.111    | 3.267        | 12    | 205  |
| Walleye            | 0.042    | 0.029        | 100  | 650  |            |             |       |      | 2.528    | 1.506        | 15    | 429  |
| Freshwater drum    | 1.240    | 0.608        | 30   | 499  | 0.833      | 0.452       | 34    | 593  | 1.972    | 0.961        | 21    | 435  |
| Total CUE          | 609      |              |      |      | 35         |             |       |      | 134      |              |       |      |
| Number of species  | 22       |              |      |      | 20         |             |       |      | 21       |              |       |      |
| Number of nets     | 24       |              |      |      | 24         |             |       |      | 36       |              |       |      |
| Total catch        | 14,605   |              |      |      | 833        |             |       |      | 4,817    |              |       |      |

TABLE 2.5.2. Species-specific catch in the 2010 NSCIN trap net program on Hamilton Harbour, the Toronto Waterfront, and the upper Bay of Quinte. Statistics shown arithmetic and geometric mean catch-per-trap net (CUE), percent relative standard error of mean log10(catch+1), % RSE = 100\*SE/mean, and mean fork (for species with a forked tail) or total length (mm). A total of 26 species was caught.

#### Bluegill

Bluegill were abundant in the upper Bay of Quinte and Hamilton Harbour but relatively uncommon at the Toronto Waterfront (Table 2.5.2). Bluegill ranges in age from 1-7 years with age-4 and 5 being relatively common (Table 2.5.5).

#### Smallmouth bass

Smallmouth bass were uncommon in all areas (Table 2.5.2). Of note was the two large age-8 fish caught at the Toronto Waterfront (Table 2.5.6).

#### Largemouth bass

Largemouth bass were most abundant in the upper Bay of Quinte and of low abundance in Hamilton Harbour (Table 2.5.2). Fish of age-0 to 11 years were caught

with age-1 fish from the 2009 year-class particularly common in all geographic areas (Table 2.5.7).

#### Black crappie

Black crappie were most abundant in the upper Bay of Quinte and relatively uncommon in Hamilton Harbour and the Toronto Waterfront (Table 2.5.2). Black crappie ranged in age from age-1 to 7. Age-2 and 3 fish were most common (Table 2.5.8)

#### Yellow perch

Yellow perch were common in all three geographic areas (Table 2.5.2). The perch ranged in age from age-1 to 6 years (Table 2.5.9). The widest range in ages and the oldest perch were found on the upper Bay of Quinte.

| Age (years)           | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-----------------------|------|------|------|------|------|------|------|------|------|------|------|
| Year-class            | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 |
| Hamilton Harbour      |      |      |      |      |      |      |      |      |      |      |      |
| Number                |      | 1    | 12   | 3    | 1    | 1    |      |      |      |      |      |
| Mean fork length (mm) |      | 446  | 565  | 634  | 644  | 602  |      |      |      |      |      |
| Mean weight (g)       |      | 727  | 1533 | 2019 | 1948 | 1413 |      |      |      |      |      |
| Toronto Waterfront    |      |      |      |      |      |      |      |      |      |      |      |
| Number                | 2    | 2    | 2    | 2    | 3    | 2    | 2    |      |      |      |      |
| Mean fork length (mm) | 355  | 531  | 524  | 597  | 689  | 798  | 749  |      |      |      |      |
| Mean weight (g)       | 377  | 1259 | 1244 | 1728 | 2674 | 4133 | 3426 |      |      |      |      |
| Upper Bay of Quinte   |      |      |      |      |      |      |      |      |      |      |      |
| Number                |      | 7    | 7    | 6    | 1    |      | 2    | 1    |      | 1    | 1    |
| Mean fork length (mm) |      | 448  | 524  | 598  | 754  |      | 744  | 676  |      | 850  | 747  |
| Mean weight (g)       |      | 826  | 1113 | 1681 | 2930 |      | 3128 | 2131 |      | 3418 | 2594 |

TABLE 2.5.3. Age distribution and mean length and weight of 59 **northern pike** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using cleithra.

TABLE 2.5.4. Age distribution and mean length and weight of 80 **pumpkinseed** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

| Age (years)                | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|----------------------------|------|------|------|------|------|------|------|------|
| Year-class                 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |
| Hamilton Harbour           |      |      |      |      |      |      |      |      |
| Number                     |      | 6    | 8    | 11   |      | 2    |      |      |
| Mean fork length (mm)      |      | 103  | 120  | 125  |      | 171  |      |      |
| Mean weight (g)            |      | 28   | 51   | 55   |      | 141  |      |      |
| Toronto Waterfront         |      |      |      |      |      |      |      |      |
| Number                     |      |      | 10   | 11   | 1    |      |      |      |
| Mean fork length (mm)      |      |      | 112  | 120  | 139  |      |      |      |
| Mean weight (g)            |      |      | 38   | 48   | 73   |      |      |      |
| <u>Upper Bay of Quinte</u> |      |      |      |      |      |      |      |      |
| Number                     |      |      | 1    | 9    | 9    | 8    | 2    | 2    |
| Mean fork length (mm)      |      |      | 129  | 146  | 151  | 156  | 173  | 162  |
| Mean weight (g)            |      |      | 55   | 88   | 98   | 105  | 144  | 127  |

#### Walleye

Walleye were most abundant in the upper Bay of Quinte. No walleye were caught at the Toronto Waterfront and only a single fish was caught in Hamilton Harbour (Table 2.5.2). The most common ages were 2, 3, 5 and 7 years from the 2008, 2007, 2005 and 2003 year-classes, respectively (Table 2.5.10).

| Age (years)                | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|----------------------------|------|------|------|------|------|------|------|------|
| Year-class                 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |
| <u>Hamilton Harbour</u>    |      |      |      |      |      |      |      |      |
| Number                     |      | 1    | 3    | 4    | 11   | 4    | 5    | 2    |
| Mean fork length (mm)      |      | 130  | 136  | 158  | 165  | 171  | 177  | 178  |
| Mean weight (g)            |      | 62   | 66   | 110  | 122  | 134  | 161  | 149  |
| Toronto Waterfront         |      |      |      |      |      |      |      |      |
| Number                     |      | 1    |      | 2    |      | 5    | 2    | 1    |
| Mean fork length (mm)      |      | 103  |      | 142  |      | 183  | 201  | 218  |
| Mean weight (g)            |      | 28   |      | 78   |      | 189  | 221  | 308  |
| <u>Upper Bay of Quinte</u> |      |      |      |      |      |      |      |      |
| Number                     |      |      | 3    | 4    | 4    | 16   | 1    | 1    |
| Mean fork length (mm)      |      |      | 121  | 136  | 155  | 169  | 172  | 193  |
| Mean weight (g)            |      |      | 39   | 57   | 100  | 121  | 135  | 201  |

TABLE 2.5.5. Age distribution and mean length and weight of 70 **bluegill** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

TABLE 2.5.6. Age distribution and mean length and weight of 9 smallmouth bass sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

| Age (years)           | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-----------------------|------|------|------|------|------|------|------|------|------|
| Year-class            | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 |
| Hamilton Harbour      |      |      |      |      |      |      |      |      |      |
| Number                |      |      | 1    | 1    |      |      |      |      |      |
| Mean fork length (mm) |      |      | 196  | 278  |      |      |      |      |      |
| Mean weight (g)       |      |      | 140  | 415  |      |      |      |      |      |
| Toronto Waterfront    |      |      |      |      |      |      |      |      |      |
| Number                |      |      |      |      |      |      |      |      | 2    |
| Mean fork length (mm) |      |      |      |      |      |      |      |      | 455  |
| Mean weight (g)       |      |      |      |      |      |      |      |      | 2087 |
| Upper Bay of Quinte   |      |      |      |      |      |      |      |      |      |
| Number                |      |      | 1    |      |      | 2    | 1    |      | 1    |
| Mean fork length (mm) |      |      | 244  |      |      | 413  | 415  |      | 419  |
| Mean weight (g)       |      |      | 206  |      |      | 1658 | 1306 |      | 1544 |

| Age (years)             | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Year-class              | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 |
| <u>Hamilton Harbour</u> |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  |      | 5    |      |      | 1    | 1    |      |      | 1    |      |      |      |
| Mean fork length (mm)   |      | 170  |      |      | 345  | 390  |      |      | 424  |      |      |      |
| Mean weight (g)         |      | 92   |      |      | 881  | 1321 |      |      | 1544 |      |      |      |
| Toronto Waterfront      |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  |      | 13   | 3    |      |      |      | 1    |      |      |      |      | 2    |
| Mean fork length (mm)   |      | 200  | 271  |      |      |      | 294  |      |      |      |      | 478  |
| Mean weight (g)         |      | 152  | 367  |      |      |      | 490  |      |      |      |      | 2366 |
| Upper Bay of Quinte     |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  | 1    | 15   | 3    | 3    | 4    |      | 2    |      | 1    |      |      |      |
| Mean fork length (mm)   | 152  | 205  | 280  | 304  | 337  |      | 348  |      | 420  |      |      |      |
| Mean weight (g)         | 65   | 166  | 454  | 545  | 764  |      | 807  |      | 1145 |      |      |      |

TABLE 2.5.7. Age distribution and mean length and weight of 56 **largemouth bass** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

TABLE 2.5.8. Age distribution and mean length and weight of 43 **black crappie** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

| Age (years)               | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|---------------------------|------|------|------|------|------|------|------|------|
| Year-class                | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |
| Hamilton Harbour          |      |      |      |      |      |      |      |      |
| Number                    |      |      | 7    | 1    | 1    |      |      |      |
| Mean fork length (mm)     |      |      | 191  | 230  | 262  |      |      |      |
| Mean weight (g)           |      |      | 138  | 255  | 375  |      |      |      |
| <u>Toronto Waterfront</u> |      |      |      |      |      |      |      |      |
| Number                    |      |      |      | 1    | 2    |      |      |      |
| Mean fork length (mm)     |      |      |      | 188  | 240  |      |      |      |
| Mean weight (g)           |      |      |      | 119  | 249  |      |      |      |
| Upper Bay of Quinte       |      |      |      |      |      |      |      |      |
| Number                    |      | 6    | 8    | 13   | 2    | 1    |      | 1    |
| Mean fork length (mm)     |      | 179  | 218  | 250  | 281  | 272  |      | 315  |
| Mean weight (g)           |      | 115  | 202  | 341  | 444  | 427  |      | 650  |

| Age (years)           | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|-----------------------|------|------|------|------|------|------|------|
| Year-class            | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 |
| Hamilton Harbour      |      |      |      |      |      |      |      |
| Number                |      |      | 16   | 7    | 2    |      |      |
| Mean fork length (mm) |      |      | 200  | 221  | 245  |      |      |
| Mean weight (g)       |      |      | 121  | 166  | 204  |      |      |
| Toronto Waterfront    |      |      |      |      |      |      |      |
| Number                |      | 5    | 20   | 4    |      |      |      |
| Mean fork length (mm) |      | 144  | 186  | 204  |      |      |      |
| Mean weight (g)       |      | 46   | 93   | 123  |      |      |      |
| Upper Bay of Quinte   |      |      |      |      |      |      |      |
| Number                |      |      | 4    | 11   | 9    | 5    | 3    |
| Mean fork length (mm) |      |      | 179  | 203  | 214  | 253  | 256  |
| Mean weight (g)       |      |      | 86   | 128  | 160  | 273  | 278  |

TABLE 2.5.9. Age distribution and mean length and weight of 30 **yellow perch** sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

TABLE 2.5.10. Age distribution and mean length and weight of 30 walleye sampled from NSCIN trap nets in three geographic areas. Ages were interpreted using scales.

| Age (years)             | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 14   |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Year-class              | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1996 |
| <u>Hamilton Harbour</u> |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  |      |      |      |      |      |      |      | 1    |      |      |      |      |      |
| Mean fork length (mm)   |      |      |      |      |      |      |      | 627  |      |      |      |      |      |
| Mean weight (g)         |      |      |      |      |      |      |      | 3737 |      |      |      |      |      |
| Toronto Waterfront      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Mean fork length (mm)   |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Mean weight (g)         |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Upper Bay of Quinte     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Number                  |      |      | 10   | 10   |      | 5    |      | 3    |      |      |      |      | 1    |
| Mean fork length (mm)   |      |      | 363  | 439  |      | 516  |      | 528  |      |      |      |      | 554  |
| Mean weight (g)         |      |      | 533  | 976  |      | 1705 |      | 1832 |      |      |      |      | 1383 |

# 2.6. St. Lawrence River Fish Community Index Netting—Lake St. Francis

Every other year in early fall, the Lake Ontario Management Unit conducts an index gillnet survey in Lake St. Francis. The catches are used to estimate abundance, measure biological attributes, and to collect age structures, stomach contents and tissues for pathological examination for selected species. This survey is part of a larger effort to monitor changes in the fish communities in four distinct sections of the St. Lawrence River (Thousand Islands, Middle Corridor, Lake St. Lawrence, and Lake St. Francis), and it is coordinated with the New York State Department of Environmental Conservation (NYSDEC) to provide river-wide coverage of fisheries resources.

In 2010 the survey was conducted during the period of September 13-23. Thirty six sets were made, using standard multi-panel gillnets with monofilament meshes ranging from 1.5 to 6 inches at half-inch increments. The nets were fished for approximately 24 hours. The overall catch was 1,544 fish comprising 12 species (summary in Table 2.6.1). The average number of fish per set was 42.9, a slight decrease from the

record high level in 2008, and still more than three times the low levels observed in 2002 (Fig. 2.6.1). The dominant species in the catch by far were yellow perch (71.9% of the catch), followed by rock bass (16.4%), walleye (3.7%), white sucker (3.6%), and brown bullhead (1.3%) (Fig. 2.6.2).

#### Species Highlights

Yellow perch continued to be abundant in 2010 (Fig. 2.6.3). Over the history of the netting program, there was a decline in the abundance of yellow perch between the start of the series in 1984, and 2002. The decline was especially evident in large perch (>220 mm) indicating increased mortality of older fish. The trend was reversed in 2006, when large number of small perch was caught, followed by record high catches in 2008 with both small and large perch abundant. The 2010 catches were similar to 2008, but fewer large and more small perch were caught. The decrease in large perch is consistent with increased commercial exploitation since 2009, while the increase

TABLE 2.6.1. Summary of catches per standard gillnet set in the Lake St. Francis community index netting program, 1984-2010. All catches prior to 2002 were adjusted by a factor of 1.58 to be comparable to the new netting standard initiated in 2002. No survey was conducted in 1996.

|                  | 1984  | 1986  | 1988  | 1990  | 1992  | 1994  | 1998  | 2000  | 2002  | 2004  | 2006  | 2008  | 2010  |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Lake Sturgeon    | -     | -     | -     | -     | -     | _     | -     | 0.04  | -     | 0.03  | -     | 0.03  | -     |
| Longnose Gar     | -     | 0.23  | 0.09  | -     | 0.66  | 0.26  | 0.14  | 0.13  | 0.40  | -     | 0.06  | -     | -     |
| Bowfin           | 0.04  | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| Alewife          | 0.04  | -     | -     | -     | -     | -     | -     | -     | 0.03  | 0.06  | 0.22  | -     | -     |
| Salvelinus sp.   | -     | -     | 0.04  | -     | -     | -     | -     | -     | -     |       | -     | -     | -     |
| Northern Pike    | 4.18  | 3.93  | 4.44  | 3.82  | 4.13  | 3.91  | 3.71  | 3.34  | 1.23  | 1.45  | 1.67  | 1.08  | 0.31  |
| Muskellunge      | -     | -     | 0.04  | -     | -     | -     | -     | -     | -     | 0.03  | -     | -     | -     |
| White Sucker     | 1.71  | 2.17  | 1.01  | 1.71  | 1.41  | 1.67  | 1.99  | 1.63  | 0.74  | 1.06  | 0.97  | 1.94  | 1.56  |
| Moxostoma sp.    | -     | -     | 0.04  | 0.18  | 0.04  | 0.09  | 0.18  | 0.09  | -     | -     | 0.11  | 0.19  | 0.14  |
| Common Carp      | 0.13  | -     | -     | 0.09  | -     | -     | -     | -     | 0.09  | -     | 0.25  | 0.03  | -     |
| Golden Shiner    | -     | -     | -     | -     | -     | 0.04  | -     | -     | 0.03  | -     | -     | -     | -     |
| Creek Chub       | -     | -     | -     | -     | -     | -     | 0.09  | -     | -     | -     | -     | -     | -     |
| Fallfish         | -     | -     | -     | 0.09  | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| Brown Bullhead   | 1.14  | 1.27  | 0.62  | 0.40  | 0.70  | 0.44  | 0.95  | 3.25  | 0.54  | 1.38  | 2.81  | 1.97  | 0.56  |
| Rock Bass        | 3.52  | 3.48  | 2.81  | 1.36  | 2.15  | 2.11  | 2.58  | 1.85  | 2.26  | 2.17  | 5.69  | 7.89  | 7.03  |
| Pumpkinseed      | 4.97  | 1.72  | 0.84  | 0.75  | 1.49  | 1.76  | 1.54  | 1.06  | 0.41  | 0.41  | 0.89  | 1.50  | 0.06  |
| Bluegill         | -     | -     | -     | -     | -     | -     | 0.05  | 0.04  | 0.10  | -     | -     | -     | 0.06  |
| Smallmouth Bass  | 0.88  | 0.63  | 0.26  | 0.26  | 0.62  | 0.62  | 1.40  | 0.44  | 1.02  | 0.59  | 1.17  | 1.67  | 0.44  |
| Largemouth Bass  | 0.04  | -     | 0.09  | 0.09  | -     | 0.04  | 0.09  | 0.13  | 0.20  | -     | 0.61  | 0.31  | 0.33  |
| Black Crappie    | 0.04  | 0.09  | 0.04  | 0.04  | 0.09  | 0.13  | -     | 0.09  | 0.07  | -     | -     | -     | -     |
| Yellow Perch     | 21.45 | 16.32 | 20.88 | 16.57 | 15.83 | 13.72 | 11.89 | 9.36  | 6.49  | 7.45  | 16.36 | 31.03 | 30.83 |
| Walleye          | 0.48  | 0.45  | 0.97  | 0.35  | 0.35  | 0.26  | 0.36  | 0.31  | 0.16  | 0.41  | 0.39  | 1.08  | 1.58  |
| Freshwater Drum  | -     | -     | -     | -     | -     | -     | -     | -     | 0.04  | -     | -     | 0.03  | -     |
| All species      | 38.64 | 30.30 | 32.18 | 25.72 | 27.48 | 25.06 | 24.96 | 21.76 | 13.81 | 15.04 | 31.19 | 48.89 | 42.89 |
| Count of species | 13    | 10    | 14    | 13    | 11    | 13    | 13    | 14    | 16    | 11    | 14    | 13    | 12    |

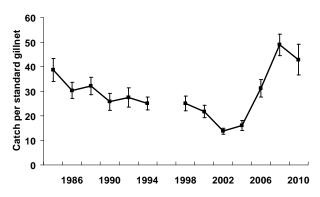



FIG. 2.6.1. Catches (±1SE) of all species combined, Lake St. Francis, 1984-2010.

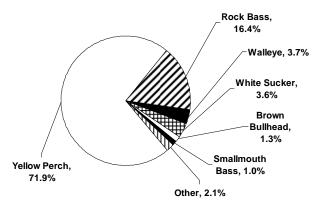



FIG. 2.6.2. Species composition in the 2010 Lake St. Francis community index netting program.

#### in small fish suggests continued recruitment.

Northern pike catches were the lowest since the start of index netting in 1984 (Fig. 2.6.4). A decline in abundance of small fish (<500 mm) was first observed in 1994, followed by a sharp decline in abundance of all sizes in 2002. This pattern is the opposite of the one observed in yellow perch, and it suggests a recruitment problem. The catches since 2002 remained low, with few small fish, and the 2010 catches suggest a further drop in abundance, down to less than one tenth of the 1980s levels.

Smallmouth bass abundance declined since the previous survey (Fig. 2.6.5). The abundance of smallmouth bass fluctuated considerably since the mid-1990s, and was generally higher than in the earlier years of the netting program. The low 2010 catches suggest a significant drop from record high abundance observed just two years earlier

Walleye catches in 2010 were the highest in the history of the netting program, This marks the second survey in a row with record high catches, roughly three times the levels observed in the 1984-2006 period.

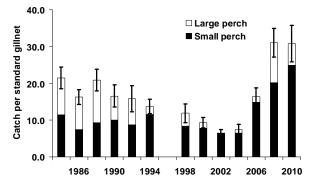



FIG. 2.6.3. Catches of small (<=220mm total length) and large (>220 mm total length) yellow perch in the Lake St. Francis community index netting program, 1984-2010. Error bars ( $\pm$ 1SE) apply to the total catch (small + large).

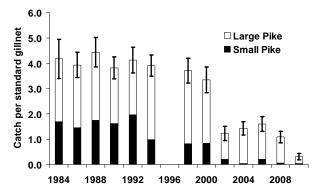



FIG. 2.6.4. Catches of small (<=500 mm total length) and large (>500 mm total length) northern pike in the Lake St. Francis community index netting program, 1984-2010. Error bars ( $\pm$  1SE) apply to the total catch (small + large).

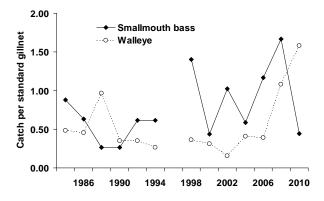



FIG. 2.6.5. Catches of smallmouth bass and walleye in the Lake St. Francis community index netting program, 1984-2010.

#### 2.7 Juvenile Atlantic Salmon Parr Survey

In 2010, Atlantic salmon spring fingerlings (~1 g) were stocked in the Credit River and its tributaries to restore self-sustaining populations (Table 2.7.1). The purpose of this assessment was to evaluate growth and survival of Atlantic salmon parr stocked as spring fingerlings, and in conjunction with smolt surveys, to evaluate the relative contribution of each reach to the smolt migration. Atlantic salmon populations were estimated at 5 reaches, and another reach downstream from the spring fingerling stocking was sampled to determine the presence of yearling parr stocked in 2009 (Table 2.7.2, Fig. 2.7.1). Two smaller reaches on Black Creek were also stocked but not sampled.

Atlantic salmon parr populations were estimated using marks and recapture. Parr were captured by electrofishing and marked in October 2010, after most of the year's growth was complete, and when fish size indicates potential smolting. Marking and recapture sessions were about one week apart. Other species were released upon capture, and were not generally recorded. Parr were marked (3,186) using orange, blue, or black Visible Implant Elastomer (VIE) marks placed behind the eye or under the jaw in combination to discriminate each reach, and age 0 from age 1 and older fish (Table 2.7.3). During recapture sessions parr were marked for smolt assessment. Petersen population estimates were stratified by size due to size-dependent catchability, and to estimate the population of groups

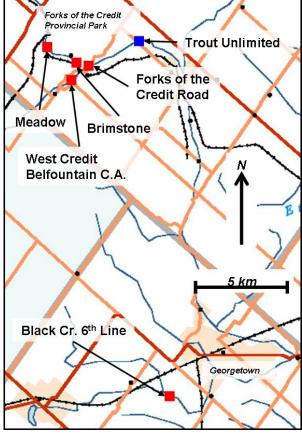



FIG. 2.7.1. Location of reaches sampled for Atlantic salmon in the Credit River in 2010. Red and blue boxes indicate mark-recapture sites and marking only, respectively.

|                              |        | Mean weig |        | Length of | Stream width | Density   |
|------------------------------|--------|-----------|--------|-----------|--------------|-----------|
| Reach                        | Number | (g)       | Date   | reach (m) | (m)          | (No. m-2) |
| Meadow (Forks Prov. Park)    | 47,369 | 1.2       | May 4  | 707       | 9            | 7.53      |
| Brimstone (Forks Prov. Park) | 40,575 | 1.1       | May 6  | 511       | 12           | 6.56      |
| Forks of the Credit Road     | 39,266 | 1.7       | May 25 | 409       | 16           | 6.11      |
| West Credit Belfountain C.A. | 39,196 | 1.2       | May 20 | 800       | 10           | 5.00      |
| Black Creek 6th Line         | 40,116 | 1.1       | May 5  | 1,005     | 7            | 5.79      |

TABLE 2.7.1. Number of Atlantic salmon stocked at study reaches in the Credit River and Black Creek in 2010.

TABLE 2.7.2. Geo-coordinates (downstream end) and dimensions electrofishing sample in 2010.

| Reach                        | Latitude  | Longitude            | Sample length So<br>(m) | tream width<br>(m) |
|------------------------------|-----------|----------------------|-------------------------|--------------------|
| Meadow (Forks Prov. Park)    | 43° 48.76 | $80^{\circ} \ 00.87$ | 359                     | 9                  |
| Brimstone (Forks Prov. Park) | 43° 48.18 | 79° 59.70            | 331                     | 12                 |
| Forks of the Credit Road     | 43° 48.29 | 79° 59.48            | 274                     | 16                 |
| West Credit Belfountain C.A. | 43° 47.82 | 80° 00.41            | 377                     | 10                 |
| Black Creek 6th Line         | 43° 37.78 | 79° 56.88            | 438                     | 7                  |
| Trout Unlimited (lower)      | 43° 48.94 | 79° 57.58            | 1,066                   | 12                 |
| Trout Unlimited (upper)      | 43° 48.85 | 79° 57.00            | 399                     | 13                 |

TABLE 2.7.3. Number of Atlantic salmon marked and VIE colour and location by age group in 2010.

|                              |        | Age 0  |           | А      | ge 1 and old | er        | Total  |
|------------------------------|--------|--------|-----------|--------|--------------|-----------|--------|
| Reach                        | Number | Colour | Location  | Number | Colour       | Location  | number |
| Meadow (Forks Prov. Park)    | 573    | Black  | Left jaw  | 72     | Black        | Right jaw | 645    |
| Brimstone (Forks Prov. Park) | 707    | Orange | Left jaw  | 90     | Blue         | Left jaw  | 797    |
| Forks of the Credit Road     | 456    | Orange | Left jaw  | 45     | Blue         | Left jaw  | 501    |
| West Credit Belfountain C.A. | 458    | Orange | Right jaw | 126    | Blue         | Right jaw | 584    |
| Black Creek 6th Line         | 524    | Orange | Left eye  | 84     | Blue         | Left eye  | 608    |
| Trout Unlimited              | 18     | Orange | Right eye | 33     | Blue         | Right eye | 51     |
| Total                        | 2,736  |        |           | 450    |              |           | 3,186  |

of parr with differing size-dependent life history strategies.

Atlantic salmon parr exhibited two distinct growth patterns in the Credit River. Parr were smaller at the West Credit and Black Creek than at the main branch reaches (Fig. 2.7.2). The size differences were not explained by density-dependent growth related to stocking (Table 2.7.1).

The population, density, and biomass estimates of Atlantic salmon parr in the Credit River are in Table 2.7.4. From a total of 206,523 spring fingerlings stocked at these 5 reaches in 2010, an estimated 32,955 parr have survived. Of these 9,724 parr may be large enough ( $\geq$  98 mm) to smolt in 2011, along with 2,717 age-1 parr. Assuming survival to smolt of 0.677<sup>1</sup> we expect 8,423 smolts from these reaches in 2011. Similarly, of the remaining 23,231 age-0 parr, we expect 8,059 smolts in 2012.

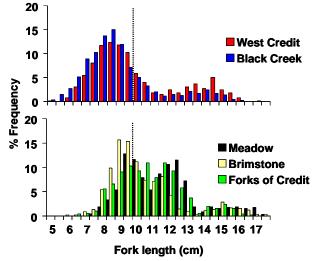



FIG. 2.7.2. Fork length distributions of Atlantic salmon parr in the Credit River in 2010. The dotted line indicates the 97.5 mm division, above which parr are expected to smolt in 2011.

TABLE. 2.7.4. Population, density, and biomass of Atlantic salmon by age/size groups in the Credit River during electrofishing surveys in 2010. Atlantic salmon >98 mm fork length are expected to smolt in 2011.

| Reach                        | Age/size (mm)        | Number    | Lower 95%<br>CI | Upper 95%<br>CI | Density<br>(No. m <sup>-2</sup> ) | Biomass<br>(g m <sup>-2</sup> ) |
|------------------------------|----------------------|-----------|-----------------|-----------------|-----------------------------------|---------------------------------|
| Meadow (Forks Prov. Park)    | Age 0 <98            | 998       | 495             | 1,871           | 0.31                              | 2.94                            |
|                              | Age 0 ≥98            | 1,119     | 826             | 1,510           | 0.35                              | 6.16                            |
|                              | Age 1 ≥138           | 176       | 94              | 314             | 0.05                              | 2.36                            |
| Brimstone (Forks Prov. Park) | Age 0 <98            | 2,306     | 1,452           | 3,618           | 0.58                              | 4.59                            |
|                              | Age 0 <u>&gt;</u> 98 | 1,091     | 743             | 1,594           | 0.27                              | 3.77                            |
|                              | Age 1 ≥138           | 314       | 147             | 604             | 0.08                              | 3.21                            |
| Forks of the Credit Road     | Age 0 <98            | 3,594     | 1,073           | 6,260           | 0.84                              | 6.40                            |
|                              | Age 0 <u>&gt;</u> 98 | 2,697     | 1,395           | 4,930           | 0.63                              | 9.21                            |
|                              | Age 1 ≥138           | $458^{1}$ | -               | -               | 0.11                              | 3.76                            |
| West Credit Belfountain C.A. | Age 0 <98            | 1,948     | 1,270           | 2,963           | 0.53                              | 2.42                            |
|                              | Age 0 <u>&gt;</u> 98 | 487       | 229             | 937             | 0.13                              | 1.64                            |
|                              | Age 1 ≥128           | 308       | 178             | 519             | 0.08                              | 2.60                            |
| Black Creek 6th Line         | Age 0 <98            | 3,473     | 2,413           | 4,975           | 1.18                              | 5.43                            |
|                              | Age 0 <u>&gt;</u> 98 | 330       | 191             | 556             | 0.11                              | 1.40                            |
|                              | Age 1 ≥128           | 233       | 124             | 417             | 0.08                              | 2.48                            |

<sup>1</sup> Population estimate based on catchability of Age  $0 \ge 98$  mm

The target density<sup>2</sup>  $(0.05-0.5 \text{ m}^{-2})$  of age-0 parr was exceeded at all reaches, and survival from stocking to October (9-24%, Fig. 2.7.3) was low compared with published values<sup>1</sup>. The lowest parr survival corresponded with the highest stocking density at the Meadow reach, suggesting density-dependent effects. Stocking densities in Ontario are relatively high compared with Atlantic salmon restoration programs, elsewhere (e.g. Connecticut, New York State).

<sup>1</sup> based on: Robertson, C.T. 2005. Conservation of endangered Atlantic salmon in Maine. M.Sc. Thesis. University of Toronto. 143 pp.

<sup>2</sup> Miller-Dodd, L., and S. Orsatti. 1995. An Atlantic salmon restoration plan for Lake Ontario. Ontario Ministry of Natural Resources. Lake Ontario Assessment Internal Report LOA 95.08. Napanee.

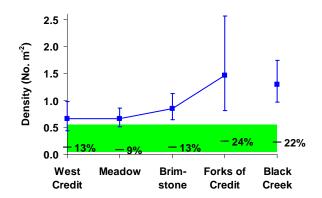



FIG. 2.7.3. Density with 95% CI and % survival of age-0 Atlantic salmon parr in the Credit River in 2010. The shaded zone indicates the target for density.

#### 2.8 Credit River Chinook Assessment

Growth, condition, and lamprey marking of Chinook salmon were monitored during the fall spawning run (approximately October 1) in the Credit River at the Kraft dam in Streetsville. Chinook salmon were electrofished in the Credit River for spawn collection by the Ringwood Fish Culture Station. LOMU staff measured fork length and weight and collected otoliths, for ageing, from a sample of these fish. Prior to 2004, ages of Chinook salmon were based on the length distributions. This method was validated for ages 1 to 3 as accurate based on fin clipped (known age) fish stocked in 1989. Since 2005, Chinook salmon have been aged by counting annuli on thin sectioned otoliths. Mean length-at-age reported since 2005 have been recalculated as a weighted mean based on the unsorted sample and are presented here for the first time. In addition the mean length-at age of female Chinook salmon in 1995 was revised based on a reexamination of the data. The body condition was estimated for each sex as the weight of a 900 mm fish based on a general linear model.

Length of age-2 males (804 mm) and females (794 mm) and age-3 females (885 mm) increased slightly (<1%) from the previous year, but the length of age-3 males (918 mm) increased by almost 3% (Fig. 2.8.1). Length of both ages and sexes of Chinook salmon in the Credit River in 2010, was slightly above (<1%) the mean for 1991-2009 (Fig. 2.8.1).

The condition of female Chinook salmon in the Credit River in 2010 increased significantly (P > 0.05) over the previous seven years, and was not significantly different (P < 0.05) than in 1999-2002 (Fig. 2.8.2). The condition of the male Chinook salmon was not significantly different from 2009, and most years from 1989-2003, but was significantly higher than in 2004-2008.

All Chinook salmon stocked into the Credit River and other Lake Ontario locations in 2008 and 2009 were marked with an adipose fin clip. Unclipped fish observed in the Credit River spawning run were presumed to be wild. Of age-2 (2008 year class) and age-1 (2009 year class) Chinook salmon, 83% (N=67) and 91% (N=39), respectively, were stocked. The estimated numbers of wild Chinook salmon smolts were 14,201 and 8,481 in 2008 and 2009, respectively.

Lamprey marks on Chinook salmon in the Credit River increased from zero in 2009 to 0.2 marks/fish in 2010 (Fig. 2.8.3). Although low compared with the 1970s, this value was the second highest, only to 2007, in the last 30 years. B4 lamprey scars dominated the marks (Table 2.8.1) and fresh wounds (A1 and A2) comprised 25% of the marks (Fig. 2.8.3).

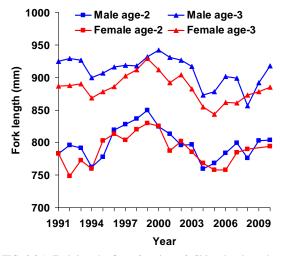



FIG. 2.8.1. Fork length of age-2 and age-3 Chinook salmon by sex during the spawning run in the Credit River, 1991-2010.

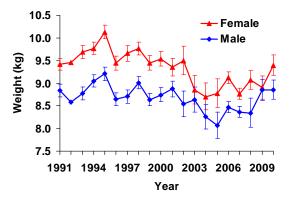



FIG. 2.8.2. Mean weight  $(\pm 95\%)$  of a 900 mm (35.4 inch) Chinook salmon during the spawning run in the Credit River, 1991-2010.

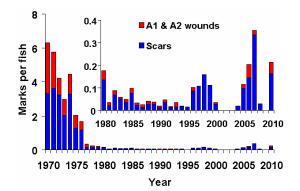



FIG. 2.8.3. Lamprey marking on Chinook salmon and coho salmon in the Credit River, Ontario during fall 1970-2010. Since 1990, A1 and A2 marks<sup>1</sup> were called wounds and the remainder of marks were called scars to fit with historical classification.

King, E. L., Jr. and T. A. Edsall. 1979. Illustrated field guide for the classification of sea lamprey attack marks on great lakes lake trout. G.L.F.C. Special Publication 79-1.

| Year |       |       |       | Mark  | s/fish |       |       |       |
|------|-------|-------|-------|-------|--------|-------|-------|-------|
|      | A1    | A2    | A3    | A4    | B1     | B2    | B3    | B4    |
| 1990 | 0.004 | 0.004 | 0.000 | 0.004 | 0.000  | 0.000 | 0.004 | 0.004 |
| 1991 | 0.014 | 0.005 | 0.005 | 0.009 | 0.021  | 0.000 | 0.002 | 0.007 |
| 1992 | 0.003 | 0.003 | 0.010 | 0.005 | 0.000  | 0.000 | 0.000 | 0.003 |
| 1993 | 0.021 | 0.000 | 0.003 | 0.000 | 0.003  | 0.000 | 0.006 | 0.003 |
| 1994 | 0.000 | 0.003 | 0.009 | 0.006 | 0.000  | 0.000 | 0.000 | 0.003 |
| 1995 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000  | 0.000 | 0.003 | 0.006 |
| 1996 | 0.000 | 0.012 | 0.029 | 0.003 | 0.000  | 0.012 | 0.018 | 0.012 |
| 1997 | 0.000 | 0.000 | 0.006 | 0.102 | 0.000  | 0.000 | 0.000 | 0.000 |
| 1998 | 0.000 | 0.000 | 0.000 | 0.069 | 0.000  | 0.010 | 0.003 | 0.075 |
| 1999 | 0.000 | 0.000 | 0.005 | 0.051 | 0.005  | 0.000 | 0.000 | 0.051 |
| 2000 | 0.000 | 0.013 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003  | 0.005 | 0.013 | 0.000 |
| 2005 | 0.007 | 0.011 | 0.020 | 0.011 | 0.009  | 0.013 | 0.020 | 0.029 |
| 2006 | 0.026 | 0.034 | 0.017 | 0.034 | 0.009  | 0.009 | 0.009 | 0.068 |
| 2007 | 0.000 | 0.009 | 0.028 | 0.121 | 0.000  | 0.009 | 0.047 | 0.084 |
| 2008 | 0.000 | 0.000 | 0.015 | 0.007 | 0.000  | 0.000 | 0.000 | 0.007 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2010 | 0.034 | 0.020 | 0.020 | 0.013 | 0.020  | 0.013 | 0.034 | 0.060 |

Table 2.8.1. Classification of lamprey marks (King and Edsall 1979) on Chinook salmon in the Credit River, 1990-2010.

### **3. Recreational Fishing Surveys**

#### 3.1 Chinook Salmon Mark and Tag Monitoring

This is the first year of assessment for a Chinook salmon mark and tag project to determine the ratio of stocked vs. wild fish, as well as to examine fish distribution and movement. It will take a few years of assessment to get an understanding of fish production and movement around the lake. While both NYSDEC and MNR are working together on this project, only the methods and results from the 2010 Ontario assessment are provided here. In the future, as more data is collected, a joint report will be provided based on combined data from both NYSDEC and OMNR.

In 2008, NYSDEC acquired an AutoFish System from Northwest Marine Technology to apply fin clips and coded wire tags (CWTs) to fish stocked in Lake Ontario. This system is in a mobile trailer, and has since been used by NYSDEC and OMNR to mark all Chinook salmon stocked into Lake Ontario with an adipose fin clip, and some of these fish have been tagged internally with a CWT in the nose to designate the agency and stocking location.

Angler-caught Chinook salmon were sampled from June 25 to September 4, 2010 at selected high-effort boat ramps and marinas. Chinook salmon were measured, weighed, and examined for fin clips and CWTs. A subsample of Chinook salmon otoliths and noses were collected for age interpretation and CWT extraction, respectively. Ages were obtained by counting annuli on 204 thin sectioned otoliths from Chinook salmon with fork length <900 mm. Age distributions on the remaining Chinook salmon were obtained with monthly stratified age-length keys. For fish greater than 900 mm an age-length keys were based on Credit River samples (Section 2.8).

We sampled 404 angler-caught Chinook salmon, and most of these samples were from Port Credit, Bluffers, and Whitby where angling effort was higher. A greater proportion of unclipped Chinook salmon was observed at Port Credit, Whitby, and Port Darlington due to greater catches of 3 year-olds that mostly were not clipped before stocking in 2007. Most of the anglercaught Chinook salmon (380) were ages 1-3, and almost all of the fish with adipose fin clips (155) were ages 1 or 2 (Table 3.1.1). One age-3 Chinook salmon with an adipose fin clip was observed at Port Darlington, and had been stocked in 2007 as part of pen-rearing project at Barcovan or Wellington by the Central Lake Ontario Sport Anglers. Stocked Chinook salmon were more abundant and larger than wild. A small majority of age-1 and age-2 Chinook salmon (65% and 56%, respectively) had fin clips, indicating they were stocked (Table 3.1.1). Age-1 and age-2 Chinook salmon with fin clips were both 45 mm longer on average than those with no clip (Table 3.1.2 and Fig. 3.1.1). Stream studies (OMNR unpublished data) show that stocked age-0 Chinook salmon are larger before they smolt than wild salmon, and that growth advantage may be maintained up to age 1 and 2.

Chinook salmon with NY CWTs (27) outnumbered Ontario CWTs (18). However, NYSDEC stocked 3.5 times more tagged Chinook salmon than OMNR (Table 3.1.3). NY CWTs were observed at all locations, but more (37%) were seen at Bluffers. CWTs from fish stocked in the Credit River in 2008 were observed widely dispersed from Port Credit to Port Darlington (Table 3.1.3). In contrast, CWTs from fish stocked in 2009 tended to be closer to the stocking location. Although sample sizes are small, this is consistent with increased dispersal from the stocking location with age.

TABLE. 3.1.1. Age distribution of angler-caught Chinook salmon by fin clip in 2010, and estimated percent stocked. Three age-1 Chinook salmon were captured with a CWT and no clip, were included with the Adipose clip category.

| Fin clip  |   |     | Age |     |    |
|-----------|---|-----|-----|-----|----|
| rmenp     | 0 | 1   | 2   | 3   | 4  |
| No clip   | 3 | 56  | 42  | 126 | 21 |
| Adipose   | 0 | 102 | 53  | 1   | 0  |
| % stocked | 0 | 65  | 56  | -   | -  |

TABLE. 3.1.2. Average fork length (+SD) in millimeters of anglercaught Chinook salmon by age and month in 2010. Samples from June 25 and September 4 were grouped with July and August, respectively.

| Fin clip | Month  | Age              |                   |                   |  |  |  |  |
|----------|--------|------------------|-------------------|-------------------|--|--|--|--|
| 1 in cup | WOlter | 0                | 1                 | 2                 |  |  |  |  |
| N L'-    | July   | -                | 439 <u>+</u> 68.9 | 709 <u>+</u> 79.7 |  |  |  |  |
| No clip  | August | 283 <u>+</u> 5.6 | 433 <u>+</u> 73.8 | 694 <u>+</u> 62.6 |  |  |  |  |
| A        | July   | -                | 449 <u>+</u> 54.7 | 738 <u>+</u> 85.4 |  |  |  |  |
| Adipose  | August | -                | 541 <u>+</u> 71.9 | 769 <u>+</u> 65.1 |  |  |  |  |

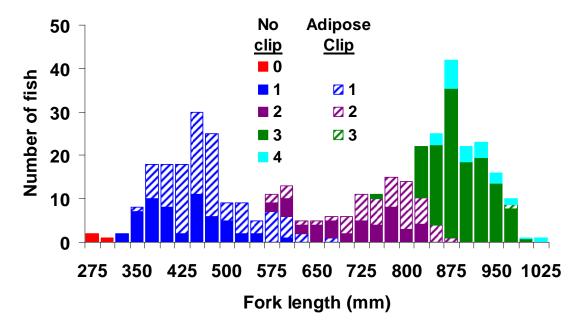



FIG. 3.1.1. Length distribution of angler-caught Chinook salmon by age and fin clip in 2010.

|                                   |                |                 |                   | Year and lo         | cation stoc     | ked             |                   |                      |
|-----------------------------------|----------------|-----------------|-------------------|---------------------|-----------------|-----------------|-------------------|----------------------|
| Location<br>recaptured in<br>2010 | 2008 &<br>2009 | 2008            |                   |                     | 2               | 2009            |                   |                      |
|                                   | NY             | Credit<br>River | Port<br>Dalhousie | Burlington<br>Canal | Bronte<br>Creek | Credit<br>River | Bluffer's<br>Park | Bowmanville<br>Creek |
| Hamilton                          | 1              | 0               | 0                 | 1                   | 0               | 1               | 0                 | 0                    |
| Port Credit                       | 6              | 3               | 0                 | 0                   | 0               | 2               | 1                 | 0                    |
| Bluffers                          | 10             | 1               | 1                 | 1                   | 0               | 0               | 1                 | 1                    |
| Whitby                            | 1              | 3               | 0                 | 0                   | 0               | 0               | 0                 | 0                    |
| Pt Darlington                     | 3              | 1               | 0                 | 0                   | 0               | 0               | 0                 | 0                    |
| Port Hope                         | 5              | 0               | 0                 | 0                   | 0               | 0               | 0                 | 0                    |
| Wellington                        | 1              | 0               | 0                 | 0                   | 0               | 0               | 0                 | 1                    |
| Total                             | 27             | 8               | 1                 | 2                   | 0               | 3               | 2                 | 2                    |
| Number<br>stocked                 | 715,510        | 85,000          | 20,205            | 20,220              | 20,201          | 20,255          | 20,199            | 20,403               |

TABLE. 3.1.3. Number of angler-caught Chinook salmon recaptured with coded wire tags in 2010 by stocking and recapture locations and years, and number stocked. Coincidental stocking and recapture locations are shaded.

### 4. Commercial Fishery

#### 4.1 Quota and Harvest Summary

Lake Ontario supports a locally important commercial fish industry. The commercial harvest comes primarily from the Canadian waters of Lake Ontario east of Brighton (including the Bay of Quinte) and the St. Lawrence River (Fig. 4.1.1). Commercial harvest statistics for 2010 were obtained from the commercial fish harvest information system (CFHIS) which is managed, in partnership, by the Ontario Commercial Fisheries Association (OCFA) and the Ontario Ministry of Natural Resources. Commercial quota, harvest and landed value statistics for Lake Ontario and the St. Lawrence River for 2010 are shown in Tables 4.1.1 (base quota), 4.1.2 (issued quota), 4.1.3 (harvest) and 4.1.4 (landed value).

#### Lake Ontario

The total harvest of all species was 418,804 lb (\$491,089) in 2010, up 33,085 lb (9%) from 2009 (Fig. 4.1.2, Table 4.1.5).

#### Lake whitefish

Lake whitefish harvest was 43,236 lb, 36% of base

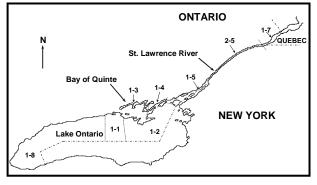



FIG. 4.1.1. Map of Lake Ontario and the St. Lawrence River showing commercial fishing quota zones in Canadian waters.

quota, and down over 25,000 lb from last year's harvest. Seasonal whitefish harvest and biological attributes (e.g., size and age structure) information are reported in Section 4.2.

#### Yellow perch

Yellow perch harvest was 140,207 lb, 31% of the base quota, and an increase of 9,027 lb (7%) from the previous year.

#### Walleye

Walleye harvest was 24,540 lb, 50% of the base quota, and an increase of 2,445 lb (11%) from the previous year.

TABLE 4.1.1. Commercial fish **base quota** (lb) in the Canadian waters of Lake Ontario, 2010. See Fig. 4.1.1 for a map of the quota zones. Although there is also American eel base quota, commercial fishing for this species is currently closed, due to conservation considerations, and base quotas are not shown here.

|                |         | Lake Ontario |         |         |        |        | St. Lawrence River East Lake |        |        | West Lake Base quota by waterboo<br>Lake St. Lawrence |         |         | oody (lb) |
|----------------|---------|--------------|---------|---------|--------|--------|------------------------------|--------|--------|-------------------------------------------------------|---------|---------|-----------|
|                | 1-1     | 1-2          | 1-3     | 1-4     | 1-8    | 1-5    | 2-5                          | 1-7    | 1      | 1                                                     | Ontario | River   | Total     |
| Black crappie  | 4,540   | 2,500        | 16,310  | 800     | 2,800  | 14,170 | 18,140                       | 4,840  | 3,100  | 9,850                                                 | 26,950  | 37,150  | 77,050    |
| Bowfin         |         |              |         |         | 500    |        |                              |        |        |                                                       | 500     |         | 500       |
| Brown bullhead | 36,200  |              |         |         |        |        |                              |        | 14,350 | 27,220                                                | 36,200  |         | 77,770    |
| Common carp    |         |              | 1,000   |         |        |        |                              |        |        |                                                       | 1,000   |         | 1,000     |
| Lake whitefish | 7,275   | 76,023       | 17,364  | 20,313  | 208    |        |                              |        |        |                                                       | 121,183 |         | 121,183   |
| Sunfish        | 28,130  |              |         |         |        |        |                              |        | 14,600 | 18,080                                                | 28,130  |         | 60,810    |
| Walleye        | 4,255   | 35,310       |         | 8,308   | 800    |        |                              |        |        |                                                       | 48,673  |         | 48,673    |
| Yellow perch   | 35,590  | 182,508      | 96,128  | 126,170 | 13,000 | 68,976 | 83,174                       | 16,200 | 1,400  | 4,420                                                 | 453,396 | 168,350 | 627,566   |
| Total          | 115,990 | 296,341      | 130,802 | 155,591 | 17,308 | 83,146 | 101,314                      | 21,040 | 33,450 | 59,570                                                | 716,032 | 205,500 | 1,014,552 |

TABLE 4.1.2. Commercial fish **issued quota** (lb) in the Canadian waters of Lake Ontario, 2010. See Fig. 4.4.1 for a map of the quota zones.

|                | Lake Ontario |         |         |         | St. L | awrence | River  | East Lake | West Lake | Issued quota by waterbody (lb)<br>St. Lawrence |              |         |         |
|----------------|--------------|---------|---------|---------|-------|---------|--------|-----------|-----------|------------------------------------------------|--------------|---------|---------|
|                | 1-1          | 1-2     | 1-3     | 1-4     | 1-8   | 1-5     | 2-5    | 1-7       | 1         | 1                                              | Lake Ontario | River   | Total   |
| Black crappie  | 2,500        | 1,250   | 15,370  | 400     | 1,400 | 10,995  | 2,420  | 8,795     | 2,725     | 6,775                                          | 20,920       | 22,210  | 52,630  |
| Bowfin         |              |         |         |         | 250   |         |        |           | -         | -                                              | 250          | -       | 250     |
| Brown bullhead | 18,100       |         |         |         |       |         |        |           | 12,175    | 13,610                                         | 18,100       | -       | 43,885  |
| Common carp    |              |         |         |         |       |         |        |           |           |                                                | -            | -       | -       |
| Lake whitefish | 2,300        | 74,745  | 12,434  | 10,162  | 104   |         |        |           |           |                                                | 99,745       | -       | 99,745  |
| Sunfish        | 17,000       |         |         |         |       |         |        |           | 16,100    | 28,000                                         | 17,000       | -       | 61,100  |
| Walleye        | 627          | 17,755  |         | 27,904  | 400   |         |        |           |           |                                                | 46,686       | -       | 46,686  |
| Yellow perch   | 12,185       | 105,385 | 94,234  | 120,708 | 6,500 | 58,244  | 19,200 | 45,697    | 1,200     | 2,660                                          | 339,012      | 123,141 | 466,013 |
| Total          | 52,712       | 199,135 | 122,038 | 159,174 | 8,654 | 69,239  | 21,620 | 54,492    | 32,200    | 51,045                                         | 541,713      | 145,351 | 770,309 |

|                      |        | Lake   | Ontario |         | St. L  | awrence | River  | East Lake | West Lake   | 1               | Fotal harves             | t (lb)             |
|----------------------|--------|--------|---------|---------|--------|---------|--------|-----------|-------------|-----------------|--------------------------|--------------------|
| Species              | 1-1    | 1-2    | 1-3     | 1-4     | 1-5    | 2-5     | 1-7    | 1         | 1           | Lake<br>Ontario | St.<br>Lawrence<br>River | All<br>waterbodies |
| Black crappie        | 372    | 2      | 7,660   | 25      | 4,967  | 844     | 521    | 40        | 2,501       | 8,058           | 6,332                    | 16,931             |
| Bowfin               | 2,628  | -      | 1,602   | -       | 2,430  | 1.233   | 374    | 305       | 2,001<br>61 | 4.230           | 4.037                    | 8.633              |
| Brown bullhead       | 2,080  | 161    | 7,085   | 1,181   | 7,262  | 1,510   | 39,065 | -         | 200         | 10,506          | 47,836                   | 58,543             |
| Channel catfish      | -      | -      | 12      | -       | -      | -       | -      | -         | -           | 12              | -                        | 12                 |
| Common carp          | 31     | 135    | 1,954   | 72      | 932    | -       | -      | 60        | -           | 2,192           | 932                      | 3,184              |
| Freshwater drum      | -      | 1,238  | 11,975  | 7,763   | 7      | -       | -      | -         | 39          | 20,976          | 7                        | 21,022             |
| Lake herring (cisco) | 49     | 193    | 1,845   | 1,292   | -      | -       | -      | -         | 148         | 3,379           | -                        | 3,527              |
| Lake whitefish       | -      | 37,223 | 4,890   | 1,124   | -      | -       | -      | -         | -           | 43,236          | -                        | 43,236             |
| Northern pike        | 3,163  | 1,796  | 24,784  | 3,088   | 5,169  | -       | -      | 2,047     | 6,193       | 32,831          | 5,169                    | 46,240             |
| Rock bass            | 1,432  | 2,441  | 6,706   | 2,276   | 1,146  | -       | -      | 1,972     | 3,200       | 12,855          | 1,146                    | 19,173             |
| Sunfish              | 3,795  | 10     | 81,905  | 1,798   | 7,268  | 3,571   | 5,267  | 12,797    | 23,544      | 87,509          | 16,106                   | 139,955            |
| Walleye              | 33     | 6,083  | -       | 18,424  | -      | -       | -      | -         | -           | 24,540          | -                        | 24,540             |
| White bass           | -      | 39     | -       | 181     | -      | -       | -      | -         | -           | 220             | -                        | 220                |
| White perch          | 58     | 103    | 11,085  | 9,790   | 187    | -       | -      | 18        | 4,328       | 21,037          | 187                      | 25,570             |
| White sucker         | 42     | 604    | 5,235   | 1,138   | 1,352  | -       | -      | -         | -           | 7,017           | 1,352                    | 8,369              |
| Yellow perch         | 755    | 23,399 | 55,709  | 60,344  | 36,575 | 20,064  | 18,832 | 174       | 914         | 140,207         | 75,471                   | 216,765            |
| Total                | 14,437 | 73,426 | 222,446 | 108,495 | 67,294 | 27,222  | 64,059 | 17,413    | 41,126      | 418,804         | 158,575                  | 635,918            |

TABLE 4.1.3. 2010 commercial **harvest** (lb) for fish species harvested from the Canadian waters of Lake Ontario and the St. Lawrence River, East and West Lakes (two Lake Ontario embayments).

TABLE 4.1.4. 2010 commercial harvest (lb), price per lb, and **landed value** for fish species harvested from the Canadian waters of Lake Ontario and the St. Lawrence River, and the total for all waterbodies including East and West Lakes.

|                      | Ι       | .ake Ontar      | io           | S       | t. La | awrence R  | iver         | А       | ll w | aterbod       | ies          |
|----------------------|---------|-----------------|--------------|---------|-------|------------|--------------|---------|------|---------------|--------------|
| Species              | Harvest | Price per<br>lb | Landed value | Harvest | Pri   | ice per lb | Landed value | Harvest | Pri  | ice per<br>lb | Landed value |
| Black crappie        | 8,058   | \$2.80          | \$22,547     | 6,332   | \$    | 2.39       | \$15,159     | 16,931  | \$   | 2.67          | \$45,269     |
| Bowfin               | 4,230   | \$0.31          | \$1,302      | 4,037   | \$    | 0.49       | \$1,969      | 8,633   | \$   | 0.40          | \$3,448      |
| Brown bullhead       | 10,506  | \$0.28          | \$2,952      | 47,836  | \$    | 0.31       | \$14,809     | 58,543  | \$   | 0.29          | \$17,213     |
| Common carp          | 2,192   | \$0.24          | \$526        | 932     | \$    | 0.22       | \$205        | 3,184   | \$   | 0.23          | \$737        |
| Freshwater drum      | 20,976  | \$0.09          | \$1,829      | 7       | \$    | 0.05       | \$0          | 21,022  | \$   | 0.09          | \$1,833      |
| Lake herring (cisco) | 3,379   | \$0.26          | \$879        | 0       |       |            |              | 3,527   | \$   | 0.26          | \$917        |
| Lake whitefish       | 43,236  | \$0.92          | \$39,709     | 0       |       |            |              | 43,236  | \$   | 0.92          | \$39,709     |
| Northern pike        | 32,831  | \$0.27          | \$8,726      | 5,169   | \$    | 0.28       | \$1,454      | 46,240  | \$   | 0.27          | \$12,345     |
| Rock bass            | 12,855  | \$0.44          | \$5,658      | 1,146   | \$    | 0.44       | \$508        | 19,173  | \$   | 0.44          | \$8,487      |
| Sunfish              | 87,509  | \$1.22          | \$106,858    | 16,106  | \$    | 0.89       | \$14,376     | 139,955 | \$   | 1.22          | \$170,087    |
| Walleye              | 24,540  | \$2.01          | \$49,280     | 0       |       |            |              | 24,540  | \$   | 2.01          | \$49,280     |
| White bass           | 220     | \$0.65          | \$143        | 0       |       |            |              | 220     | \$   | 0.65          | \$143        |
| White perch          | 21,037  | \$0.41          | \$8,610      | 187     | \$    | 0.28       | \$52         | 25,570  | \$   | 0.44          | \$11,312     |
| White sucker         | 7,017   | \$0.11          | \$751        | 1,352   | \$    | 0.10       | \$140        | 8,369   | \$   | 0.11          | \$891        |
| Yellow perch         | 140,207 | \$1.72          | \$241,320    | 75,471  | \$    | 1.52       | \$114,884    | 216,765 | \$   | 1.65          | \$358,002    |
| Total                | 418,792 |                 | \$491,089    | 158,575 |       |            | \$163,556    | 635,906 |      | 12            | \$719,673    |

#### St. Lawrence River

The total harvest of all species was 158,575 lb (\$163,556) in 2010 (Fig. 4.1.3, Table 4.1.6).

#### Yellow perch

Yellow perch harvest was 75,471 lb, 45% of base quota, a decrease of 2,113 lb (3%) from the previous year.

TABLE 4.1.5. Commercial harvest (lb; 1960-2010) and landed value (\$; 1985-2010) trends for the Canadian waters of Lake Ontario, including the Bay of Quinte.

|      | Harvest (lb) |      | Harvest (lb) | Value (\$)   |
|------|--------------|------|--------------|--------------|
| 1960 | 1,834,000    | 1985 | 1,497,000    | \$ 906,879   |
| 1961 | 2,026,000    | 1986 | 1,759,000    | \$ 1,577,086 |
| 1962 | 1,620,000    | 1987 | 756,000      | \$ 993,609   |
| 1963 | 1,847,000    | 1988 | 1,190,000    | \$ 896,481   |
| 1964 | 1,814,000    | 1989 | 1,211,000    | \$ 989,563   |
| 1965 | 2,226,000    | 1990 | 1,165,000    | \$ 907,409   |
| 1966 | 1,347,000    | 1991 | 1,210,000    | \$ 1,003,909 |
| 1967 | 1,617,000    | 1992 | 1,191,000    | \$ 1,039,892 |
| 1968 | 1,829,000    | 1993 | 1,103,000    | \$ 746,892   |
| 1969 | 2,130,000    | 1994 | 1,243,097    | \$ 1,277,262 |
| 1970 | 2,798,000    | 1995 | 1,218,508    | \$ 1,322,557 |
| 1971 | 2,804,000    | 1996 | 1,284,022    | \$ 1,456,736 |
| 1972 | 2,455,000    | 1997 | 1,078,250    | \$ 996,383   |
| 1973 | 2,279,000    | 1998 | 973,006      | \$ 1,059,212 |
| 1974 | 2,299,000    | 1999 | 964,743      | \$ 1,067,904 |
| 1975 | 2,664,000    | 2000 | 914,014      | \$ 990,544   |
| 1976 | 2,935,000    | 2001 | 840,557      | \$ 861,978   |
| 1977 | 2,456,000    | 2002 | 602,338      | \$ 475,262   |
| 1978 | 2,469,000    | 2003 | 447,633      | \$ 324,320   |
| 1979 | 2,042,000    | 2004 | 404,236      | \$ 249,444   |
| 1980 | 1,982,000    | 2005 | 395,365      | \$ 310,084   |
| 1981 | 2,387,000    | 2006 | 579,738      | \$ 521,910   |
| 1982 | 1,999,000    | 2007 | 443,691      | \$ 429,171   |
| 1983 | 2,263,000    | 2008 | 373,917      | \$ 294,331   |
| 1984 | 2,050,000    | 2009 | 385,719      | \$ 413,580   |
|      |              | 2010 | 418,804      | \$ 491,089   |

TABLE 4.1.6. Commercial harvest (lb; 1988-2010) and landed value (\$; 1989-1994 and 1996-2010) trends for the Canadian waters of the St. Lawrence River.

|      | Harvest (lb) | Value (\$) |
|------|--------------|------------|
| 1988 | 318,000      |            |
| 1989 | 273,800      | \$217,000  |
| 1990 | 305,100      | \$237,000  |
| 1991 | 247,600      | \$328,100  |
| 1992 | 292,700      | \$257,300  |
| 1993 | 237,000      | \$171,900  |
| 1994 | 262,240      | \$257,900  |
| 1995 | 375,763      |            |
| 1996 | 445,052      | \$399,856  |
| 1997 | 353,838      | \$397,494  |
| 1998 | 378,729      | \$424,111  |
| 1999 | 368,035      | \$438,581  |
| 2000 | 341,672      | \$407,647  |
| 2001 | 272,523      | \$352,551  |
| 2002 | 266,817      | \$241,817  |
| 2003 | 211,254      | \$203,710  |
| 2004 | 143,845      | \$102,646  |
| 2005 | 221,294      | \$206,479  |
| 2006 | 230,201      | \$190,819  |
| 2007 | 175,951      | \$161,484  |
| 2008 | 148,963      | \$ 89,954  |
| 2009 | 190,472      | \$150,716  |
| 2010 | 158,575      | \$163,556  |

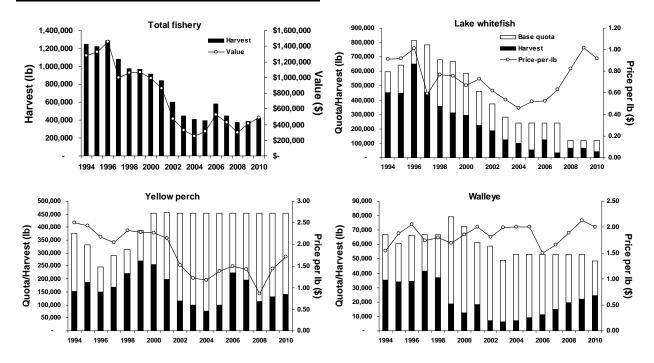



FIG. 4.1.2. Total harvest and value for the Lake Ontario commercial fishery and quota, harvest and price-per-lb for lake whitefish, yellow perch and walleye, 1994-2010.

#### **Fishery Performance**

Commercial harvest relative to quota, both quota issued and potential base quota, is shown for selected species in Fig. 4.1.4. Fisheries are performing efficiently and at full capacity when harvest approaches issued and base quota. This appears to be the case, for example, for sunfish in East and West Lakes. Many fisheries are performing well below current quota.

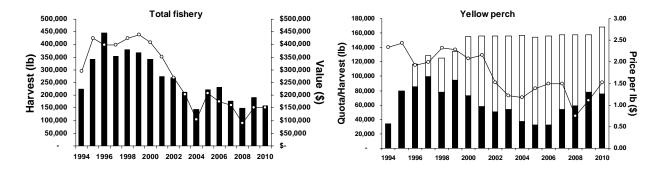



FIG. 4.1.3. Total harvest and value for the St. Lawrence River commercial fishery and quota, harvest and price-per-lb for yellow perch, 1994-2010.

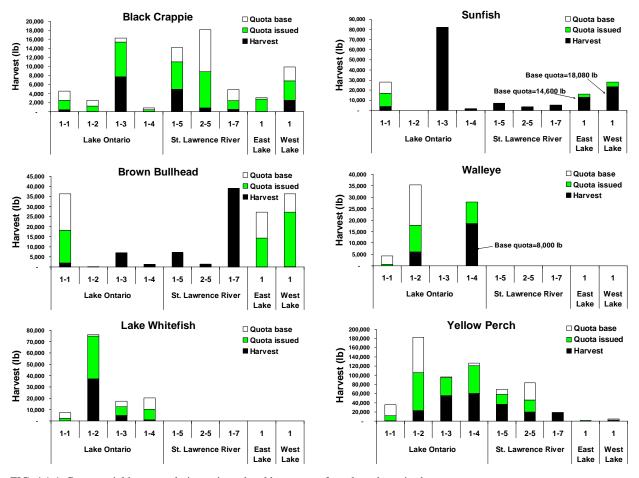



FIG. 4.1.4. Commercial harvest relative to issued and base quota for selected species by quota zone.

#### 4.2 Lake Whitefish Commercial Catch Sampling

Sampling of commercially harvested lake whitefish for biological attribute information occurs annually. While total lake whitefish harvest can be determined from commercial fish Daily Catch Reports (DCRs; see section 4.1), biological sampling of the catch is necessary to breakdown total harvest into size and agespecific harvest. Age-specific harvest data can then be used in catch-age modeling to estimate population size and mortality schedule.

Commercial lake whitefish harvest and fishing effort by gear type, month and quota zone (QZ) for 2010 is reported in Table 4.2.1. Most of the harvest was taken in gillnets (88% by weight); 12% of the harvest was taken in impoundment gear. Gillnet fishing during November in QZ 1-2 accounted for 63% of the total harvest, for this gear type, and 45% of the effort. Most impoundment gear harvest and effort occurred in October and November in QZ 1-3 (Table 4.2.1).

Biological sampling focused on the November spawning-time gillnet fishery on the south shore of Prince Edward County (QZ 1-2), and the October/ November spawning-time impoundment gear fishery in the Bay of Quinte (QZ 1-3). The lake whitefish sampling design involves obtaining large numbers of length tally measurements and a smaller lengthstratified sub-sample for more detailed biological sampling. Whitefish length and age distribution information is presented in (Fig. 4.2.1 and Fig. 4.2.2). In total, fork length was measured for 1,838 fish and age was interpreted using otoliths for 307 fish (Table 4.2.2, Fig. 4.2.1 and 4.2.2).

Lake Ontario Gillnet Fishery (QZ 1-2)

The mean fork length and age of lake whitefish harvested during the gillnet fishery in Quota Zone 1-2 were 481 and 10.8 years respectively (Fig. 4.2.1). Fish ranged from ages 4-23 years. The most abundant age-class in the fishery was age-7 (30% of the harvest by number). The 1992 and 1991 year-classes, at ages-18 and 19 years, represented 15% of the harvest.

Bay of Quinte November Impoundment Gear Fishery (QZ 1-3)

Mean fork length and age were 476 mm and 10.4 years, respectively (Fig. 4.2.2). Fish ranged from ages 5 to 26 years. The most abundant age-class in the fishery was age-7 from the 2003 year-class. The 1991 year-class, at age-19, represented 8% by number of the total harvest.

Condition

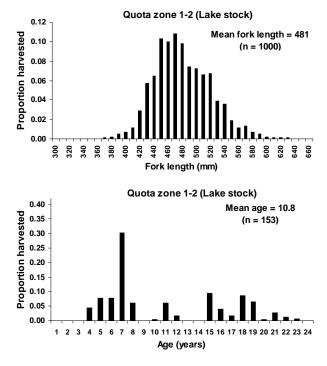

Lake whitefish (Lake Ontario and Bay of Quinte

TABLE 4.2.1. Lake whitefish harvest (lb) and fishing effort (yards of gillnet or number of impoundment nets) by gear type, month and quota zone. Harvest and effort value in **bold italic** represent months and quota zones where whitefish biological samples were collected.

|             |       | I      | Harvest (lb)  |     |       | Effort (yar | ds or number of | of nets) |
|-------------|-------|--------|---------------|-----|-------|-------------|-----------------|----------|
| Gear type   | Month | 1-2    | 1-3           | 1-4 | Month | 1-2         | 1-3             | 1-4      |
| Gillnet     | Jan   |        |               | 77  | Jan   |             |                 | 1,112    |
|             | Feb   |        |               | 85  | Feb   |             |                 | 1,172    |
|             | Mar   | 149    |               | 42  | Mar   | 1,100       |                 | 320      |
|             | Apr   | 1,399  |               |     | Apr   | 7,700       |                 |          |
|             | May   | 706    |               | 3   | May   | 6,800       |                 | 800      |
|             | Jun   | 2,144  |               |     | Jun   | 13,000      |                 |          |
|             | Jul   | 1,802  |               |     | Jul   | 13,020      |                 |          |
|             | Aug   | 1,046  |               |     | Aug   | 5,780       |                 |          |
|             | Sep   | 753    |               | 63  | Sep   | 3,080       |                 | 740      |
|             | Oct   | 9      |               | 162 | Oct   | 400         |                 | 3,600    |
|             | Nov   | 27,168 |               | 405 | Nov   | 63,040      |                 | 3,420    |
|             | Dec   | 1,895  |               | 284 | Dec   | 12,400      |                 | 3,500    |
| Impoundment | Mar   |        | 128           |     | Mar   |             | 169             |          |
|             | Apr   | 34     | 33            | 7   | Apr   | 2           | 78              | 3        |
|             | May   | 112    | 3             |     | May   | 9           | 1               |          |
|             | Jun   | 22     |               |     | Jun   | 2           |                 |          |
|             | Sep   |        | 80            |     | Sep   |             | 123             |          |
|             | Oct   |        | <i>1,94</i> 8 |     | Oct   |             | 347             |          |
|             | Nov   |        | 2,692         | 3   | Nov   |             | 213             | 2        |

TABLE 4.2.2. Age-specific vital statistics of lake whitefish sampled and harvested including number aged, number lengthed, and proportion by number of fish sampled, harvest by number and weight (kg), and mean weight (kg) and fork length (mm) of the harvest for Quota Zones 1-2 and 1-3.

|             |                |                    | Qu    | ota zone 1-2 |                |                        |                        |             |                | Quota zone 1-3  |       |        |                |                        |                        |  |
|-------------|----------------|--------------------|-------|--------------|----------------|------------------------|------------------------|-------------|----------------|-----------------|-------|--------|----------------|------------------------|------------------------|--|
|             |                | Sampled            |       |              | Haveste        | d                      |                        |             |                | Sampled         |       |        | Have           | sted                   |                        |  |
| Age (years) | Number<br>aged | Number<br>lengthed | Prop. | Number       | Weight<br>(kg) | Mean<br>weight<br>(kg) | Mean<br>length<br>(mm) | Age (years) | Number<br>aged | Number lengthed | Prop. | Number | Weight<br>(kg) | Mean<br>weight<br>(kg) | Mean<br>length<br>(mm) |  |
| 1           | -              | -                  | 0.000 | -            | -              |                        |                        | 1           | -              | -               | 0.000 | -      | -              |                        |                        |  |
| 2           | -              | -                  | 0.000 | -            | -              |                        |                        | 2           | -              | -               | 0.000 | -      | -              |                        |                        |  |
| 3           | -              | -                  | 0.000 | -            | -              |                        |                        | 3           | -              | -               | 0.000 | -      | -              |                        |                        |  |
| 4           | -              | -                  | 0.000 | -            | -              |                        |                        | 4           | -              | -               | 0.000 | -      | -              |                        |                        |  |
| 5           | 11             | 39                 | 0.020 | 430          | 276            | 0.643                  | 392                    | 5           | 2              | 7               | 0.011 | 19     | 13             | 0.681                  | 40                     |  |
| 6           | 28             | 308                | 0.160 | 3,424        | 3,112          | 0.909                  | 435                    | 6           | 25             | 87              | 0.143 | 235    | 190            | 0.809                  | 41                     |  |
| 7           | 26             | 407                | 0.211 | 4,518        | 4,450          | 0.985                  | 447                    | 7           | 43             | 149             | 0.246 | 403    | 366            | 0.908                  | 43                     |  |
| 8           | 17             | 244                | 0.127 | 2,708        | 2,923          | 1.080                  | 453                    | 8           | 8              | 28              | 0.046 | 75     | 74             | 0.985                  | 44                     |  |
| 9           | 2              | 30                 | 0.016 | 335          | 472            | 1.408                  | 483                    | 9           | 7              | 24              | 0.040 | 66     | 68             | 1.033                  | 45                     |  |
| 10          | 5              | 80                 | 0.042 | 890          | 1,215          | 1.365                  | 486                    | 10          | 6              | 21              | 0.034 | 56     | 60             | 1.059                  | 45                     |  |
| 11          | 3              | 69                 | 0.036 | 770          | 1,040          | 1.350                  | 481                    | 11          | 9              | 31              | 0.051 | 84     | 125            | 1.482                  | 49                     |  |
| 12          | 1              | 14                 | 0.008 | 161          | 214            | 1.334                  | 482                    | 12          | 3              | 10              | 0.017 | 28     | 40             | 1.406                  | 49                     |  |
| 13          | -              | -                  | 0.000 | -            | -              |                        |                        | 13          | 4              | 14              | 0.023 | 38     | 62             | 1.658                  | 52                     |  |
| 14          | 3              | 26                 | 0.013 | 286          | 557            | 1.948                  | 534                    | 14          | 7              | 24              | 0.040 | 66     | 87             | 1.326                  | 48                     |  |
| 15          | 5              | 74                 | 0.038 | 822          | 1,146          | 1.394                  | 507                    | 15          | 7              | 24              | 0.040 | 66     | 104            | 1.586                  | 50                     |  |
| 16          | 1              | 1                  | 0.001 | 15           | 31             | 2.081                  | 572                    | 16          | 5              | 17              | 0.029 | 47     | 92             | 1.954                  | 55                     |  |
| 17          | 28             | 261                | 0.136 | 2,904        | 5,099          | 1.756                  | 536                    | 17          | 7              | 24              | 0.040 | 66     | 111            | 1.691                  | 52                     |  |
| 18          | 14             | 172                | 0.089 | 1,913        | 3,179          | 1.662                  | 530                    | 18          | 27             | 93              | 0.154 | 253    | 451            | 1.781                  | 54                     |  |
| 19          | 8              | 65                 | 0.034 | 726          | 1,305          | 1.796                  | 545                    | 19          | 6              | 21              | 0.034 | 56     | 107            | 1.898                  | 56                     |  |
| 20          | 11             | 96                 | 0.050 | 1,068        | 2,078          | 1.946                  | 551                    | 20          | 3              | 10              | 0.017 | 28     | 41             | 1.452                  | 51                     |  |
| 21          | 4              | 31                 | 0.016 | 346          | 709            | 2.052                  | 546                    | 21          | 1              | 3               | 0.006 | 9      | 18             | 1.900                  | 59                     |  |
| 22          | -              | -                  | 0.000 | -            | -              |                        |                        | 22          | 2              | 7               | 0.011 | 19     | 34             | 1.816                  | 56                     |  |
| 23          | -              | -                  | 0.000 | -            | -              |                        |                        | 23          | 3              | 10              | 0.017 | 28     | 57             | 2.024                  | 56                     |  |
| 24          | 1              | 6                  | 0.003 | 63           | 123            | 1.950                  | 547                    | 24          | -              | -               | 0.000 | -      | -              |                        |                        |  |
| Total       | 168            | 1,925              | 1.000 | 21,379       | 27,930         |                        |                        | Total       | 175            | 606             | 1.000 | 1,642  | 2,099          |                        |                        |  |
| Weighted    |                |                    |       |              |                |                        |                        | Weighted    |                |                 |       |        |                |                        |                        |  |
| mean        |                |                    |       |              |                | 1.306                  |                        | mean        |                |                 |       |        |                | 1.278                  |                        |  |



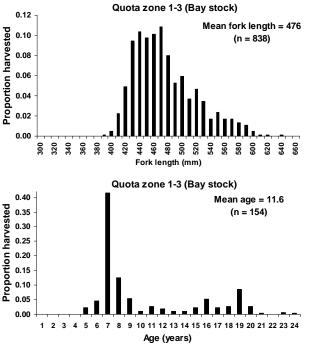



FIG. 4.2.1. Size and age distribution (by number) of lake whitefish sampled in QZ 1-2 during the 2010 commercial catch sampling program.

FIG. 4.2.2. Size and age distribution (by number) of lake whitefish sampled in QZ 1-3 during the 2010 commercial catch sampling program.

spawning stocks and sexes combined) relative weight (see Rennie et al. 2008) is shown in Figure 4.2.3. Condition declined markedly in 1994 and has remained low.

#### 4.3 Northern Pike Commercial Catch Sampling

Commercial catch sampling of northern pike was conducted during the spring of 2010. The primary objective of determining basic biological characteristics of the harvest. Pike have been commercially harvested, on an experimental basis since part way through the 2006 fishing season. In 2010, pike were sampled from the April hoop net fishery in several quota zones; harvest in this component of the pike fishery had been the largest previous years (2007-2009). The 2010 harvest is summarized in Table 4.3.1.

Sampling was conducted on 10 days in quota zones 1-3, 1-5, East Lake, and West Lake from 25 March to 9 April, 2010. A total of 820 pike were lengthed and 320 pike were measured for more detailed biological characteristics including age (Table 4.3.2). Over 70% percent of the pike sampled were female, and the mean weight of all pike sampled was 2.7 lb. Pike ranged in age from age-2 to age-10 years. The oldest pike were

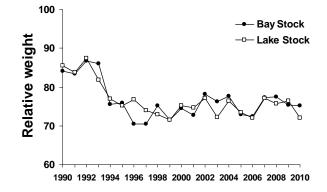
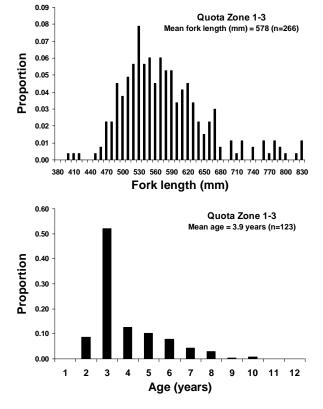



FIG. 4.2.3. Lake whitefish (Lake Ontario and Bay of Quinte spawning stocks and sexes combined) relative weight (see Rennie et al. 2008), 1990-2010.

<sup>1</sup>Rennie, M.D. and R. Verdon. 2008. Development and evaluation of condition indices for the lake whitefish. N. Amer. J. Fish. Manage. 28:1270-1293.


females; all fish over age-6 were females. Size and age distributions for pike sampled are shown in Fig. 4.3.1 to 4.3.4 for quota zones 1-3, 1-5, East Lake and West Lake, respectively.

|             |       |     |     |        | Harves | t (lb) |         |         |       |     | Ef     | fort (yar | ds or num | ber of | f nets) |         |
|-------------|-------|-----|-----|--------|--------|--------|---------|---------|-------|-----|--------|-----------|-----------|--------|---------|---------|
| Gear        | Month | 1-1 | 1-2 | 1-3    | 1-4    | 1-5    | East L. | West L. | Month | 1-1 | 1-2    | 1-3       | 1-4       | 1-5    | East L. | West L. |
| Gillnet     | Jan   |     |     |        | 102    |        |         |         | Jan   |     |        |           | 2,788     |        |         |         |
|             | Feb   |     |     |        | 116    |        |         |         | Feb   |     |        |           | 3,456     |        |         |         |
|             | Mar   |     | 9   |        | 744    |        |         |         | Mar   |     | 400    |           | 24,468    |        |         |         |
|             | Apr   |     | 42  |        | 553    |        |         |         | Apr   |     | 7,900  |           | 34,524    |        |         |         |
|             | May   |     | 36  |        | 118    |        |         |         | May   |     | 3,560  |           | 9,000     |        |         |         |
|             | Jun   |     | 208 |        | 94     |        |         |         | Jun   |     | 4,950  |           | 5,820     |        |         |         |
|             | Jul   |     | 296 |        |        |        |         |         | Jul   |     | 11,175 |           |           |        |         |         |
|             | Aug   |     | 178 |        |        |        |         |         | Aug   |     | 8,175  |           |           |        |         |         |
|             | Sep   |     | 67  |        | 58     |        |         |         | Sep   |     | 10,400 |           | 11,880    |        |         |         |
|             | Oct   |     | 30  |        | 254    |        |         |         | Oct   |     | 1,700  |           | 35,545    |        |         |         |
|             | Nov   |     | 242 |        | 570    |        |         |         | Nov   |     | 24,200 |           | 25,610    |        |         |         |
|             | Dec   |     | 39  |        | 101    |        |         |         | Dec   |     | 6,400  |           | 7,000     |        |         |         |
| Impoundment | Jan   | 106 |     |        |        |        |         |         | Jan   | 5   |        |           |           |        |         |         |
| -           | Feb   |     |     | 10     |        | 63     |         |         | Feb   |     |        | 8         |           | 12     |         |         |
|             | Mar   | 977 |     | 12,347 |        | 2,270  | 953     | 2,851   | Mar   | 71  |        | 653       |           | 278    | 57      | 71      |
|             | Apr   | 738 | 355 | 5,251  | 149    | 2,446  | 1,072   | 1,534   | Apr   | 88  | 32     | 1,439     | 10        | 786    | 224     | 151     |
|             | May   | 132 | 163 | 480    | 29     | 357    | 22      | 126     | May   | 41  | 34     | 390       | 4         | 240    | 18      | 45      |
|             | Jun   | 49  | 24  | 10     |        |        |         |         | Jun   | 20  | 10     | 8         |           |        |         |         |
|             | Jul   |     | 6   |        |        |        |         |         | Jul   |     | 3      |           |           |        |         |         |
|             | Aug   |     |     |        | 92     |        |         |         | Aug   |     |        |           | 19        |        |         |         |
|             | Sep   | 122 | 105 | 1,538  | 86     |        |         | 202     | Sep   | 84  | 44     | 546       | 13        |        |         | 104     |
|             | Oct   | 264 |     | 1,827  | 18     |        |         | 266     | Oct   | 118 |        | 1,109     | 3         |        |         | 132     |
|             | Nov   | 709 |     | 1,226  | 6      |        |         | 900     | Nov   | 87  |        | 411       | 2         |        |         | 59      |
|             | Dec   | 67  |     | 72     |        |        |         | 314     | Dec   | 10  |        | 9         |           |        |         | 6       |

TABLE 4.3.1. Northern pike harvest (lb) and fishing effort (yards of gillnet or number of impoundment nets) by gear type, month and quota zone. Harvest and effort value in *bold italic* represent gear type, months and quota zones where pike biological information was collected. No pike harvest was permitted in quota zones 2-5 or 1-7.

| Quota zone | Number<br>sampling days | Number fish<br>lengthed | Number of fish biologically sampled | Mean length (mm) | Mean age |
|------------|-------------------------|-------------------------|-------------------------------------|------------------|----------|
| 1-3        | 4                       | 266                     | 123                                 | 578              | 3.9      |
| 1-5        | 2                       | 127                     | 82                                  | 494              | 3.0      |
| East Lake  | 2                       | 166                     | 0                                   | 510              |          |
| West Lake  | 2                       | 261                     | 115                                 | 551              | 4.3      |
| Total      | 10                      | 820                     | 320                                 |                  |          |

TABLE 4.3.2. Results of the 2010 sampling for northern pike commercial harvest.



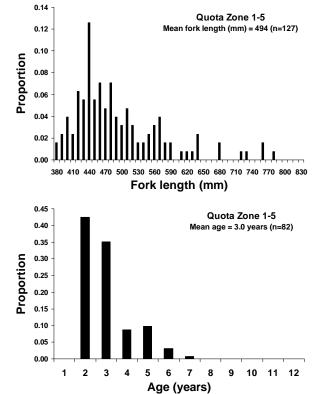



FIG. 4.3.1. Size and age distribution (by number) of northern pike sampled in QZ 1-3 during the 2010 commercial catch sampling program.

FIG. 4.3.2. Size and age distribution (by number) of northern pike sampled in QZ 1-5 during the 2010 commercial catch sampling program.

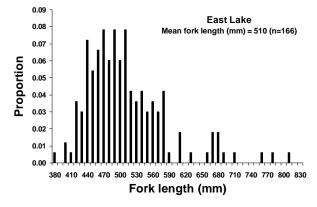



FIG. 4.3.3. Size distribution (by number) of northern pike sampled in East Lake during the 2010 commercial catch sampling program.

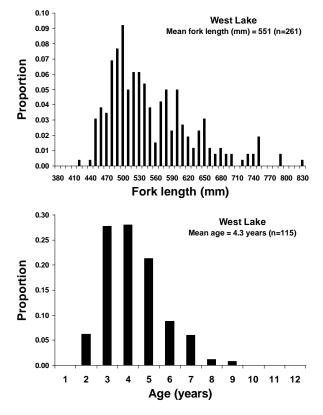



FIG. 4.3.4. Size and age distribution (by number) of northern pike sampled in West Lake during the 2010 commercial catch sampling program.

# 5. Age and Growth Summary

Biological sampling of fish from Lake Ontario Management Unit field projects routinely involves collecting and archiving structures used for such purposes as age interpretation and validation, origin determination (e.g. stocked versus wild), life history

characteristics and other features of fish growth. In 2010, a total of 8,927 structures were collected and 3,539 were processed for age interpretation from 29 different fish species and 11 different field projects (Table 5.1).

TABLE 5.1. Species-specific summary of age and growth structures collected/archived (n = 8,927) and interpreted for age (3,539) in support of 11 different Lake Ontario Management Unit field projects, 2010.

|                      | Sca       | ales        | Oto       | liths       | Cle       | ithra       | Oper      | rcula       | Spi       | nes         |
|----------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|
|                      |           | Interpreted |
| Species              | Collected | for age     |
| Alewife              | -         | -           | 161       | -           | -         | -           | -         | -           | -         | -           |
| Gizzard shad         | 18        | -           | -         | -           | -         | -           | -         | -           | -         | -           |
| Chinook salmon       | 442       | -           | 489       | 278         | -         | -           | -         | -           | -         | -           |
| Rainbow trout        | 245       | 100         | 34        | -           | -         | -           | -         | -           | -         | -           |
| Atlantic salmon      | 39        | -           | 4         | -           | -         | -           | -         | -           | -         | -           |
| Brown trout          | 90        | -           | 88        | -           | -         | -           | -         | -           | -         | -           |
| Lake trout           | 207       | -           | 206       | -           | -         | -           | -         | -           | -         | -           |
| Lake whitefish       | 367       | -           | 365       | 338         | -         | -           | -         | -           | -         | -           |
| Cisco (Lake herring) | 78        | -           | 83        | 57          | -         | -           | 1         | -           | -         | -           |
| Round whitefish      | 2         | -           | 2         | -           | -         | -           | -         | -           | -         | -           |
| Rainbow smelt        | -         | -           | 189       | -           | -         | -           | -         | -           | -         | -           |
| Northern pike        | 415       | -           | -         | -           | 406       | 406         | -         | -           | -         | -           |
| White sucker         | 15        | -           | -         | -           | -         | -           | 145       | -           | 1         | -           |
| Silver redhorse      | -         | -           | -         | -           | -         | -           | 1         | -           | -         | -           |
| Brown bullhead       | -         | -           | -         | -           | -         | -           | -         | -           | 19        | -           |
| Burbot               | -         | -           | 2         | -           | -         | -           | -         | -           | -         | -           |
| White perch          | 243       | -           | -         | -           | -         | -           | -         | -           | -         | -           |
| White bass           | 52        | -           | -         | -           | -         | -           | -         | -           | -         | -           |
| Rock bass            | 139       | -           | -         | -           | -         | -           | -         | -           | -         | -           |
| Pumpkinseed          | 272       | 160         | -         | -           | -         | -           | -         | -           | -         | -           |
| Bluegill             | 179       | 140         | -         | -           | -         | -           | -         | -           | -         | -           |
| Smallmouth bass      | 56        | 56          | 1         | -           | -         | -           | -         | -           | -         | -           |
| Largemouth bass      | 183       | 112         | -         | -           | -         | -           | -         | -           | -         | -           |
| Black crappie        | 44        | 44          | -         | -           | -         | -           | -         | -           | -         | -           |
| Yellow perch         | 1,339     | 874         | 297       | 149         | -         | -           | -         | -           | -         | -           |
| Walleye              | 726       | 60          | 720       | 597         | -         | -           | -         | -           | -         | -           |
| Freshwater drum      | 238       | -           | 319       | -           | -         | -           | -         | -           | -         | -           |
| Slimy sculpin        | -         | -           | 4         | -           | -         | -           | -         | -           | -         | -           |
| Deepwater sculpin    | -         | -           | 1         | -           | -         | -           | -         | -           | -         | -           |
| Total                | 5,389     | 1,546       | 2,965     | 1,419       | 406       | 406         | 147       | -           | 20        | -           |

### 6. Contaminant Monitoring

Lake Ontario Management Unit cooperates annually with several agencies to collect fish samples for contaminant testing. In 2010, 571 contaminant samples were collected for Ontario's Ministry of the Environment Sport Fish Monitoring program (Table 6.1). Samples were primarily collected using existing fisheries assessment programs on Lake Ontario, Bay of Quinte and the St. Lawrence River.

A summary of the number of fish samples collected, by species, for contaminant analysis by the Ministry of Environment, 2001-2010 is shown in Table 6.2.

TABLE 6.1. Number of fish samples collected, by region and species, for contaminant analysis by the Ministry of Environment, 2010.

| Region               | Block Species     | Total |
|----------------------|-------------------|-------|
| Hamilton Harbour     | 3 White bass      | 20    |
|                      | 3 Black crappie   | 9     |
| Northwestern Lake    | 6 Chinook salmon  | n 20  |
| Ontario              | Rainbow trout     | 12    |
|                      | Brown trout       | 4     |
|                      | Lake trout        | 6     |
| Ganaraska River      | 7 Rainbow trout   | 20    |
| Northeastern Lake    | 8 Chinook salmon  | n 17  |
| Ontario              | Rainbow trout     | 1     |
|                      | Brown trout       | 20    |
|                      | Lake trout        | 7     |
|                      | Rock bass         | 6     |
|                      | Yellow perch      | 20    |
|                      | Walleye           | 10    |
| Upper Bay of Quinte  | 9 Brown bullhead  | 36    |
| Middle Bay of Quinte | 10 Northern pike  | 16    |
|                      | Brown bullhead    | 20    |
|                      | White perch       | 7     |
|                      | Rock bass         | 16    |
|                      | Pumpkinseed       | 18    |
|                      | Largemouth bas    |       |
|                      | Black crappie     | 20    |
|                      | Yellow perch      | 20    |
|                      | Walleye           | 20    |
|                      | Freshwater drun   |       |
| Lower Bay of         | 11 Chinook salmon | ı 2   |
| Quinte/Eastern Lake  | Brown trout       | 10    |
|                      | Lake trout        | 20    |
|                      | Northern pike     | 4     |
|                      | Rock bass         | 20    |
|                      | Smallmouth bas    |       |
|                      | Yellow perch      | 20    |
|                      | Walleye           | 20    |
|                      | Freshwater drun   |       |
| Lake St. Francis     | 15 Northern pike  | 11    |
|                      | Pumpkinseed       | 1     |
|                      | Smallmouth bas    |       |
|                      | Largemouth bas    |       |
|                      | Yellow perch      | 20    |
|                      | Walleye           | 20    |
| Total                |                   | 589   |

TABLE 6.2. Summary of the number of fish samples collected, by species, for contaminant analysis by the Ministry of Environment, 2001-2010.

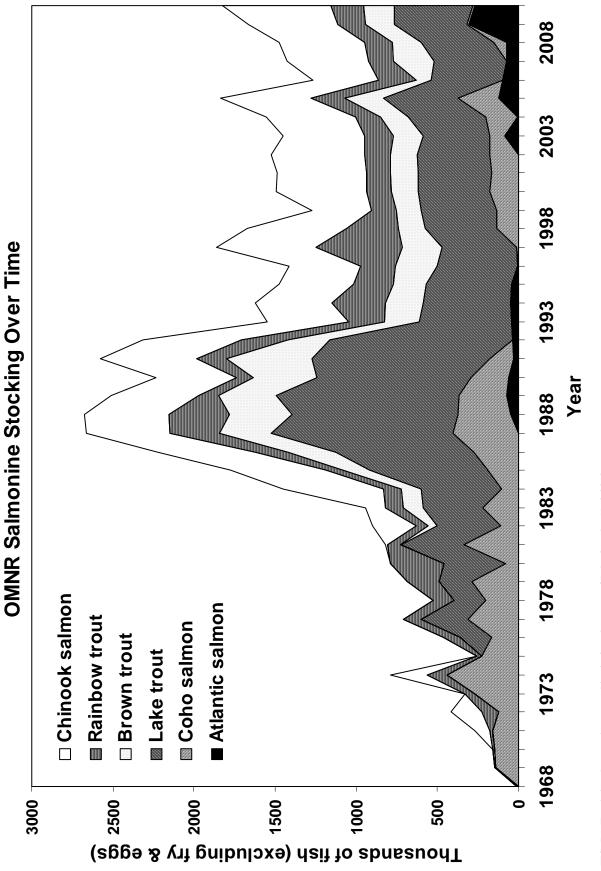
|                 |      |      |      |      |      | Year |      |      |      |      |      |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|
| Species         | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| Black crappie   |      |      | 20   | 20   | 3    | 20   |      | 20   |      | 20   | 29   |
| Bluegill        |      | 26   |      | 20   | 10   | 23   |      |      | 102  | 88   |      |
| Brown bullhead  |      | 40   | 44   | 40   | 25   | 30   | 33   | 40   | 68   | 63   | 56   |
| Brown trout     | 40   | 3    | 20   |      | 31   |      | 22   | 6    | 29   | 34   | 34   |
| Channel catfish | 20   | 20   | 7    | 23   |      | 17   |      |      |      | 8    |      |
| Chinook salmon  | 40   | 3    | 16   |      | 48   |      | 29   | 1    | 36   |      | 39   |
| Coho salmon     |      | 1    | 3    |      |      |      |      |      |      |      |      |
| Common carp     |      |      |      | 7    |      |      |      |      |      |      |      |
| Freshwater drum |      |      | 43   |      | 16   |      | 13   | 2    | 32   | 20   | 37   |
| Lake trout      |      |      | 42   |      | 54   |      | 38   | 17   | 46   | 20   | 33   |
| Lake whitefish  | 20   |      |      |      |      |      |      |      |      |      |      |
| Largemouth bass |      | 4    | 25   | 28   | 20   | 9    | 8    | 89   | 26   | 40   | 28   |
| Northern pike   |      | 53   | 39   | 60   | 22   | 40   | 22   | 94   | 35   | 28   | 31   |
| Pumpkinseed     |      | 60   | 25   | 57   | 8    | 11   | 23   | 78   | 92   | 105  | 19   |
| Rainbow trout   | 40   | 37   | 28   | 20   | 37   | 20   | 29   | 20   | 21   | 20   | 33   |
| Rock bass       |      | 36   | 30   | 38   | 11   | 21   | 27   | 30   | 20   | 40   | 42   |
| Silver redhorse |      |      |      |      |      |      | 1    |      |      |      |      |
| Smallmouth bass |      | 20   | 87   | 22   | 21   | 28   | 35   | 23   | 39   | 40   | 31   |
| Walleye         |      | 42   | 51   | 40   | 61   | 30   | 62   | 98   | 61   | 40   | 70   |
| White bass      |      |      |      |      |      |      |      |      |      |      | 20   |
| White perch     |      | 40   |      | 40   | 40   | 14   | 21   | 20   | 35   | 20   | 7    |
| White sucker    |      |      |      |      |      |      | 1    |      |      |      |      |
| Yellow perch    | 20   | 60   | 66   | 58   | 75   | 40   | 86   | 90   | 60   | 91   | 80   |
| Total           | 180  | 445  | 546  | 473  | 482  | 303  | 450  | 628  | 702  | 677  | 589  |

### 7. Stocking Program

In 2010, OMNR stocked about 2.7 million salmon and trout into Lake Ontario (Table 7.1). Figure 7.1 shows stocking trends in Ontario waters from 1968-2010. The New York State Department of Environmental Conservation (NYSDEC) also stocked 3.6 million salmon and trout into the lake in 2010.

Almost 670,000 Chinook salmon spring fingerlings were stocked at various locations to provide put-growand-take fishing opportunities. A surplus of 130,000 fish was produced in 2010. About 75% of the surplus was stocked in the Niagara area to help offset a shortfall in New York State. All Chinook for the Lake Ontario program are produced at Ringwood Fish Culture Station, currently operated by the Ontario Federation of Anglers and Hunters, under agreement with OMNR. Volunteers from host club, Metro East Anglers, provide thousands of hours of technical support at this hatchery. About 80,000 Chinook were held in pens at eight sites in Lake Ontario for a short period of time prior to stocking. This ongoing project is being done in partnership with local community groups. It is hoped that pen-imprinting will help improve returns of mature adults to these areas in the fall, thereby enhancing local nearshore and shore fishing opportunities. All Chinook salmon stocked from 2008 to 2010 were marked with a coded wire tag

| TABLE 7.1. American eel, salmon and trout stocked into Province |
|-----------------------------------------------------------------|
| of Ontario waters of Lake Ontario, 2010, and target for 2011.   |


|                 |                    | Number    | Stocked   |
|-----------------|--------------------|-----------|-----------|
| Species         |                    | 2010      | 2011      |
| American eel    |                    | 142,042   | -         |
| Atlantic salmon | Eggs               | 223,653   | 10,000    |
|                 | Fry                | 639,992   | 639,500   |
|                 | Fall fingerlings   | 177,598   | 189,800   |
|                 | Spring yearlings   | 94,369    | 94,750    |
|                 |                    | 1,135,612 | 934,050   |
| Brown trout     | Spring yearlings   | 190,040   | 165,000   |
| Chinook salmon  | Spring fingerlings | 669,452   | 540,000   |
| Coho salmon     | Fall fingerlings   | 8,415     | 50,000    |
| Lake trout      | Spring yearlings   | 478,125   | 440,000   |
|                 | Sub-adults         | 3,772     | -         |
|                 |                    | 481,897   | 440,000   |
| Rainbow trout   | Spring yearlings   | 172,226   | 140.000   |
|                 | Fall yearlings     | 23,420    | -         |
|                 | Sub-adults         | 9,220     | -         |
|                 |                    | 204,866   | 140,000   |
| Stocking totals |                    | 2,832,324 | 2,269,050 |

and/or an adipose fin clip. This was done using Northwest Marine Technology's AutoFish, a unique, highly automated clipping and tagging system. Marking will help us determine levels of natural reproduction of Chinook salmon in Lake Ontario and evaluate the effectiveness of our stocking program. The study is being done cooperatively between New York and Ontario. Anglers will continue to see adipose-clipped Chinook in the fishery in 2011 and beyond. OMNR and NYSDEC will continue to sample marked fish, collect snouts and recover tags from the recreational fisheries and other sources. In 2010, anglers contributed to the collection of data on marked Chinook through a volunteer diary program. Nineteen diaries were completed, with over 1,200 Chinook observed.

Atlantic salmon were stocked in support of an ongoing program to restore self-sustaining populations of this native species to the Lake Ontario basin (see Section 8.2). Over one million Atlantic salmon of various life stages were released into current restoration streams: Credit River, Duffins Creek and Cobourg Brook. OMNR is working cooperatively with a network of partners to plan and deliver this phase of Atlantic salmon restoration, including setting stocking targets to help meet program objectives. Atlantic salmon are produced at both OMNR and partner facilities. Three Atlantic salmon broodstocks, from different source populations in Nova Scotia, Quebec and Maine, are currently housed at OMNR's Harwood Fish Culture Station.

About 482,000 lake trout yearlings were also stocked as part of an established, long-term rehabilitation program. Lake trout stocking is focused in eastern Lake Ontario where most of the historic spawning shoals are found. Our annual target of 440,000 fish is comprised of Seneca Lake, Slate Islands and In 2010, we stocked an Michipicoten strains. additional 42,000 lake trout of Lake Simcoe origin. These fish were surplus to the Lake Simcoe management program. Increasing genetic variation in the lake trout population may increase prospects for successful rehabilitation of this native species to Lake Ontario. These fish were marked with coded wire tags so they can be easily identified during follow-up assessment.

Rainbow trout and brown trout were stocked at various locations to provide shore and boat fishing opportunities. A portion of the rainbow trout target is stocked into streams with a potential to establish wild populations. About 8,000 coho fall fingerlings were





produced at Ringwood Fish Culture Station by the Ontario Federation of Anglers and Hunters and host club, Metro East Anglers.

Over 142,000 young American eel (elvers) were stocked into the upper St. Lawrence River, as a shortterm measure to offset mortalities experienced in hydro electric generation turbines during downstream migration. This is part of a broad, bi-national, multiagency effort to reverse the serious decline in abundance of this globally significant species. Federal research scientists from Quebec recently recovered a small number of stocked eel in the St. Lawrence Estuary. These fish were part of a larger group of wild silver eels migrating downstream, enroute to the Sargasso Sea to spawn.

OMNR remains committed to providing diverse fisheries (and the associated benefits) in Lake Ontario and its tributaries, based on wild and stocked fish, as appropriate. OMNR is committed also to restoration of native species and supports efforts to maintain / restore healthy, stable Lake Ontario fish communities.

Detailed information about OMNR's 2010 stocking activities is found in Tables 7.2-7.8.

| TABLE 7.2. Atlantic salmon s | stocked in the Province of | Ontario waters of Lak | e Ontario, 2010. |
|------------------------------|----------------------------|-----------------------|------------------|
|                              |                            |                       |                  |

| SITE NAME                                         | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY          | STRAIN/<br>EGG SOURCE | AGE<br>(MONTHS) | MEAN<br>WT (G) | MARKS | NUMBER<br>STOCKED |
|---------------------------------------------------|------------------|-----------------|-------------------|-----------------------|-----------------|----------------|-------|-------------------|
|                                                   | STOCKED          |                 | NTIC SALMON - EGO |                       | (MONTIS)        | WT (0)         |       | STOCKED           |
|                                                   |                  |                 |                   |                       |                 |                |       |                   |
| CREDIT RIVER<br>Belfountain                       | 1                | 2009            | Belfountain       | LaHave/Harwood        |                 |                | None  | 25,682            |
| East Credit R site N/A                            | 1                | 2009            | Harwood           | LaHave/Harwood        |                 |                | None  | 25,801            |
|                                                   |                  | 2003            | Tiarwood          | Lai lave/i lai wood   |                 |                | NOTE  | 51,483            |
| DUFFINS CREEK                                     |                  |                 |                   |                       |                 |                |       |                   |
| East Duffins Cr Uxbridge/Pickering                |                  |                 |                   |                       |                 |                |       |                   |
| Townline                                          | 1                | 2009            | Harwood           | LaHave/Harwood        |                 |                | None  | 65,910            |
|                                                   | 11               | 2010            | Fleming College   | LaHave/Harwood        |                 |                | None  | 700               |
|                                                   | 11               | 2010            | Fleming College   | Sebago/Harwood        |                 |                | None  | 700               |
|                                                   | 11               | 2010            | Fleming College   | Lac St-Jean/Harwood   |                 |                | None  | 65                |
| West Duffins Cr 30th Sideline                     | 1                | 2009            | Harwood           | LaHave/Harwood        |                 |                | None  | 43,895            |
|                                                   |                  |                 |                   |                       |                 |                |       | 111,270           |
| HUMBER RIVER<br>Castlederg Road                   | 1                | 2009            | Ontario Streams   | LaHave/Harwood        |                 |                | None  | 25,000            |
| Chicco's                                          | 1                | 2009            | Ontario Streams   | LaHave/Harwood        |                 |                | None  | 30,000            |
| Coffey Cr Galloway Property                       | 2                | 2009            | Ontario Streams   | LaHave/Harwood        |                 |                |       | 900               |
| Humber Station Road                               | 1                | 2009            | Ontario Streams   | LaHave/Harwood        |                 |                | None  | 5,000             |
|                                                   |                  |                 |                   |                       |                 |                |       | 60,900            |
|                                                   |                  | ATLA            | NTIC SALMON - AD  | ANCED FRY             |                 |                |       |                   |
| COBOURG BROOK                                     |                  |                 |                   |                       |                 |                |       |                   |
| Ball's Mill                                       | 5                | 2009            | Fleming College   | LaHave/Harwood        | 5               | 0.7            | None  | 11,793            |
|                                                   | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.1            | None  | 15,223            |
| Crossen Road                                      | 5                | 2009            | Fleming College   | LaHave/Harwood        | 5               | 1.7            | None  | 17,564            |
|                                                   | 5                | 2009            | Fleming College   | Sebago/Harwood        | 5               | 1.2            | None  | 8,457             |
| Dale Rd.                                          | 5                | 2009            | Fleming College   | LaHave/Harwood        | 5               | 1.3            | None  | 34,607            |
|                                                   | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.2            | None  | 10,149            |
| Hie / McNichol Properties                         | 5                | 2009            | Fleming College   | LaHave/Harwood        | 5               | 1.3            | None  | 24,800            |
|                                                   |                  |                 |                   |                       |                 |                |       | 122,593           |
| CREDIT RIVER                                      |                  |                 |                   |                       |                 |                |       |                   |
| Belfountain C.A.                                  | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.2            | None  | 39,196            |
| Black Cr 6th Line                                 | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.1            | None  | 40,116            |
| Black Cr 15th Sideroad                            | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.4            | None  | 14,990            |
| Black Cr 17th Sideroad                            | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.4            | None  | 24,688            |
| Ellie's Ice Cream Parlour                         | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.7            | None  | 39,266            |
| Forks of the Credit - Dominion St.                | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.1            | None  | 40,575            |
| Forks of the Credit Prov. Park -<br>"meadow"      | 5                | 2009            | Normandale        | LaHave/Harwood        | 5               | 1.2            | None  | 47,369            |
| Forks of the Credit Prov. Park -<br>"stuck truck" |                  |                 |                   |                       |                 | 1.6            | None  | 28,565            |
| West Credit R Belfountain                         | 4                | 2009            | Belfountain       | LaHave/Harwood        |                 | 0.2            | None  | 46,793            |
|                                                   |                  |                 |                   |                       |                 |                |       | 321,558           |

Continued on next page

| . (                                                          |                  |                 |                       |                                  |                 |                | ,            |                         |
|--------------------------------------------------------------|------------------|-----------------|-----------------------|----------------------------------|-----------------|----------------|--------------|-------------------------|
| SITE NAME                                                    | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY              | STRAIN/<br>EGG SOURCE            | AGE<br>(MONTHS) | MEAN<br>WT (G) | MARKS        | NUMBER<br>STOCKED       |
| DUFFINS CREEK                                                |                  |                 |                       |                                  |                 |                |              |                         |
| East Duffins Cr Claremont Field<br>Centre                    | 5                | 2009            | Normandale            | LaHave/Harwood                   | 5               | 1.6            | None         | 19,990                  |
| East Duffins Cr Durham Board of Education Outdoor Centre     | 5                | 2009            | Normandale            | LaHave/Harwood                   | 5               | 1.6            | None         | 11,675                  |
| East Duffins Cr Michell Cr., 8th<br>Conc.                    | 5                | 2009            | Normandale            | LaHave/Harwood                   | 5               | 1.3            | None         | 22,990                  |
| East Duffins Cr Pickering Museum                             | 5                | 2009            | Normandale            | LaHave/Harwood                   | 5               | 1.6            | None         | 30,575                  |
| Ganatsekiagon Cr Tillings Rd.<br>West Duffins Cr Sideline 32 | 5<br>5           | 2000            | Normandale            | LaHave/Harwood                   | 5               | 1.3            | None         | 9,974                   |
|                                                              |                  | 2009            | Normandale            | LaHave/Harwood                   | 5               | 1.1            | None         | 25,880                  |
| West Duffins Cr Sideline 34                                  | 5<br>5           | 2009<br>2009    | Normandale<br>Harwood | LaHave/Harwood<br>LaHave/Harwood | 5<br>3          | 1.1<br>1.0     | None<br>None | 10,896<br>39,618        |
|                                                              |                  |                 |                       |                                  |                 |                |              | 171,598                 |
| HUMBER RIVER<br>Cold Cr.                                     | 4                | 2009            | Ontario Streams       | LaHave/Harwood                   |                 |                | None         | 209                     |
| Private property                                             | 4                | 2009            | Ontario Streams       | LaHave/Harwood                   |                 |                | None         | 24,034                  |
|                                                              |                  | ATLAN           | TIC SALMON - FALL     | FINGERLINGS                      |                 |                |              | 24,243                  |
| COBOURG BROOK                                                |                  |                 |                       |                                  |                 |                |              |                         |
| Danforth Rd.                                                 | 11               | 2009            | Normandale            | LaHave/Harwood                   | 10              | 9.0            | None         | 22,396                  |
| West Branch - Telephone Road                                 | 10               | 2009            | Fleming College       | LaHave/Harwood                   | 10              | 31.3           | None         | 26,515                  |
|                                                              |                  |                 |                       |                                  |                 |                |              | 48,911                  |
| CREDIT RIVER<br>Grange Sideroad                              | 11               | 2009            | Normandale            | LaHave/Harwood                   | 10              | 9.3            | None         | 20 625                  |
| Inglewood                                                    | 11               | 2009            | Normandale            | LaHave/Harwood                   | 10              | 9.3<br>9.6     | None         | 20,625<br>21,084        |
| McLaren Rd.                                                  | 10               | 2009            | Normandale            | LaHave/Harwood                   | 9               | 9.0<br>7.8     | None         | 25,033                  |
| McLaughlin Rd.                                               | 10               | 2009            | Normandale            | LaHave/Harwood                   | 9               | 8.4            | None         | 25,033                  |
|                                                              | 10               | 2000            | Tomanado              |                                  | Ū.              | 0.1            | 110110       | 91,814                  |
| DUFFINS CREEK<br>East Duffins Cr 5th Concession              | 10               | 2009            | Normandale            | Lac St-Jean/Harwood              | 11              | 13.3           | None         | 5,911                   |
|                                                              | 12               | 2009            | Normandale            | Lac St-Jean/Harwood              | 13              | 16.4           | None         | 796                     |
| East Duffins Cr Paulynn Park                                 | 10               | 2009            | Pine Valley Springs   | Sebago/Harwood                   | 10              | 23.0           | None         | 53                      |
| West Duffins Cr Wixon Cr.                                    | 10               | 2009            | Normandale            | LaHave/Harwood                   | 9               | 7.7            | None         | 30,113                  |
|                                                              |                  |                 |                       |                                  | -               |                |              | 36,873                  |
|                                                              |                  | ATLAN           | TIC SALMON - SPRIN    | IG YEARLINGS                     |                 |                |              |                         |
| COBOURG BROOK                                                |                  |                 |                       |                                  |                 |                |              |                         |
| Danforth Rd.                                                 | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 15.7           | None         | 14,571                  |
|                                                              | 4                | 2008            | Harwood               | LaHave/Harwood                   | 16              | 25.7           | None         | 744                     |
| Hie / McNichol Properties                                    | 6                | 2008            | Normandale            | Sebago Lake/Harwood              | 18              | 82.7           | None         | 656                     |
| Hie / Michichol Properties                                   | 4                | 2008            | Fleming College       | LaHave/Harwood                   | 15              | 92.8           | None         | 9,976<br><b>25,947</b>  |
| CREDIT RIVER                                                 |                  |                 |                       |                                  |                 |                |              |                         |
| Glen Williams                                                | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 16.1           | None         | 11,749                  |
| Inglewood                                                    | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 15.2           | None         | 15,540                  |
| Paper Mill Dam (Georgetown)                                  | 3                | 2008            | CRAA                  | LaHave/Harwood                   | 16              | 22.0           | None         | 304                     |
| Terra Cotta                                                  | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 15.1           | None         | 15,547<br><b>43,140</b> |
| DUFFINS CREEK<br>East Duffins Cr 5th Concession              | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 15.9           | None         | 7,656                   |
| Last Duning Cr Stri Concession                               | 3                | 2008            | Normandale            | Lac St-Jean/Harwood              | 14              | 19.9           | None         | 4,756                   |
|                                                              | 5                | 2008            | Normandale            | Lac St-Jean/Harwood              | 18              | 42.2           |              | 4,750                   |
| East Duffins Cr Paulynn Park                                 | 3                | 2008            | Normandale            | LaHave/Harwood                   | 14              | 15.3           |              | 12,100                  |
|                                                              | 5                | 2000            | Normandale            |                                  | 17              | 10.0           |              | 25,282                  |
| TOTAL - ATLANTIC SALMON EGG                                  | S / SAC FRY      |                 |                       |                                  |                 |                |              | 223,653                 |
| TOTAL - ATLANTIC SALMON ADV                                  | ANCED FRY        |                 |                       |                                  |                 |                |              | 639,992                 |
| TOTAL - ATLANTIC SALMON FALL                                 | . FINGERLING     | GS              |                       |                                  |                 |                |              | 177,598                 |
| TOTAL - ATLANTIC SALMON SPRI                                 | NG YEARLIN       | GS              |                       |                                  |                 |                |              | 94,369                  |
| TOTAL - ATLANTIC SALMON                                      |                  |                 |                       |                                  |                 |                |              | 1,135,612               |

 TABLE 7.2 (continued) Atlantic salmon stocked in the Province of Ontario waters of Lake Ontario, 2010.

| SITE NAME            | MONTH   | YEAR    | HATCHERY     | STRAIN/              | AGE      | MEAN   | MARKS | NUMBER  |
|----------------------|---------|---------|--------------|----------------------|----------|--------|-------|---------|
|                      | STOCKED | SPAWNED |              | EGG SOURCE           | (MONTHS) | WT (G) |       | STOCKED |
|                      |         |         |              |                      |          |        |       |         |
|                      |         | BRO     | WN TROUT - S | PRING YEARLINGS      |          |        |       |         |
| BRONTE CREEK         |         |         |              |                      |          |        |       |         |
| Bronte Beach Park    | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 28.1   | Ad    | 14,972  |
| DUFFINS CREEK        |         |         |              |                      |          |        |       |         |
| 401 Bridge           | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 23.9   | Ad    | 10,025  |
| LAKE ONTARIO         |         |         |              |                      |          |        |       |         |
| Ashbridge's Bay Ramp | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 28.1   | Ad    | 15,007  |
| Athol Bay            | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 23.9   | Ad    | 25,063  |
| Bluffer's Park       | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 23.9   | Ad    | 15,038  |
| Burlington Canal     | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 25.0   | Ad    | 25,000  |
| Fifty Point CA       | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 25.0   | Ad    | 15,000  |
| Jordan Harbour       | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 24.8   | Ad    | 10,073  |
| Lakefront Promenade  | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 28.1   | Ad    | 10,028  |
| Millhaven Wharf      | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 23.9   | Ad    | 14,829  |
| Oshawa Harbour       | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 23.9   | Ad    | 10,025  |
| Port Dalhousie East  | 3       | 2008    | Chatsworth   | Ganaraska/Tarentorus | 15       | 24.8   | Ad    | 24,980  |
|                      |         |         |              |                      |          |        |       | 165,043 |
| TOTAL - BROWN TROUT  |         |         |              |                      |          |        |       | 190,040 |

| SITE NAME                        | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY     | STRAIN/<br>EGG SOURCE | AGE<br>(MONTHS) | MEAN<br>WT (G) | MARKS  | NUMBER<br>STOCKED |
|----------------------------------|------------------|-----------------|--------------|-----------------------|-----------------|----------------|--------|-------------------|
|                                  |                  | CHIN            | OOK - SPRING | FINGERLINGS**         |                 |                |        |                   |
| BOWMANVILLE CREEK                |                  |                 |              |                       |                 |                |        |                   |
| Mouth                            | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 4.6            | Ad     | 1,882             |
|                                  | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 4.6            | Ad/CWT | 21,136            |
| Port Darlington                  | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 10.1           | Ad     | 10,239            |
| BRONTE CREEK                     |                  |                 |              |                       |                 |                |        | 33,257            |
| 2 <sup>nd</sup> Side Road Bridge | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.4            | Ad     | 16,322            |
|                                  | 5                | 2003            | Ringwood     | Wild - Credit R.      | 6               |                | Ad/CWT | 10,972            |
| 5 <sup>th</sup> Side Road Bridge | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.4            | Ad     | 15,577            |
|                                  | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               |                | Ad/CWT | 10,472            |
|                                  |                  |                 | -            |                       |                 |                |        | 53,343            |
| CREDIT RIVER                     |                  |                 |              |                       |                 |                |        |                   |
| Eldorado Park                    | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.3            | Ad     | 15,208            |
|                                  | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               |                | Ad/CWT | 12,799            |
| Huttonville                      | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.4            | Ad     | 19,804            |
|                                  | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.3            |        | 8,213             |
| Norval                           | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.4            | Ad     | 30,135<br>86,159  |
| DON RIVER                        |                  |                 |              |                       |                 |                |        | 00,133            |
| Donalda Golf Club                | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.2            | Ad     | 14,932            |
| HIGHLAND CREEK                   |                  |                 | -            |                       |                 |                |        |                   |
| Colonel Danforth Park            | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.2            | Ad     | 14,932            |
| HUMBER RIVER                     |                  |                 |              |                       |                 |                |        |                   |
| East Branch Islington            | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.2            | Ad     | 15,366            |
| -                                | -                | 2005            | Ringwood     | Wild - Oredit IX.     | 5               | 7.2            | Au     | 13,300            |
|                                  |                  | 0000            | D            |                       | -               | 0.5            |        | 10.010            |
| Ashbridge's Bay Ramp             | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 3.5            | Ad     | 10,919            |
| Barcovan                         | 4                | 2009            | Ringwood*    | Wild - Credit R.      | 5               | 3.6            | Ad     | 7,508             |
| Beacon Inn                       | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.4            | Ad     | 24,849            |
| Bluffer's Park                   | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.5            | Ad     | 7,417             |
|                                  | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 11.9           | Ad     | 10,252            |
| Dudia star Osas d                | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               |                | Ad/CWT | 20,787            |
| Burlington Canal                 | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.1            | Ad     | 31,317            |
| Orange Dahing an Dt              | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.1            | Ad/CWT | 20,737            |
| Consecon Robinson Pt             | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.1            | Ad     | 20,000            |
| Lakeport                         | 4<br>4           | 2009            | Ringwood     | Wild - Credit R.      | 5<br>5          | 4.1<br>4.1     | Ad     | 15,067            |
| Oshawa Harbour                   | •                | 2009            | Ringwood     | Wild - Credit R.      | -               |                | Ad     | 20,089            |
| Dort Dolhousia Foot              | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 6.3            | Ad     | 4,977             |
| Port Dalhousie East              | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.4            | Ad     | 30,326            |
|                                  | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.4            | Ad     | 33,592            |
|                                  | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 9.0            | Ad     | 20,231            |
| De et Ore dit Manie a            | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               |                | Ad/CWT | 21,155            |
| Port Credit Marina               | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 7.3            | Ad     | 4,985             |
| Wellington Channel               | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.1            | Ad     | 15,098            |
| \//bithy/llowbayer               | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 10.1           | Ad     | 10,236            |
| Whitby Harbour                   | 4                | 2009            | Ringwood     | Wild - Credit R.      | 5               | 4.1            | Ad     | 12,555            |
|                                  | 5                | 2009            | Ringwood*    | Wild - Credit R.      | 6               | 9.2            | Ad     | 12,713<br>354,810 |
| NIAGARA RIVER                    |                  |                 |              |                       |                 |                |        |                   |
| Queenston                        | 5                | 2009            | Ringwood     | Wild - Credit R.      | 6               | 5.8            | Ad/CWT | 96,653            |
| TOTAL - CHINOOK SALM             | ON               |                 |              |                       |                 |                |        | 669,452           |

 TABLE 7.4. Chinook salmon stocked in the Province of Ontario waters of Lake Ontario, 2010.

\* Pen-imprinted

\*\*All fish produced at Ringwood FCS by the Ontario Federation of Anglers and Hunters and volunteers from Metro East Anglers

| SITE NAME              | MONTH   | YEAR    | HATCHERY  | STRAIN/                          | AGE      | MEAN   | MARKS | NUMBER  |
|------------------------|---------|---------|-----------|----------------------------------|----------|--------|-------|---------|
|                        | STOCKED | SPAWNED |           | EGG SOURCE                       | (MONTHS) | WT (G) |       | STOCKED |
|                        |         |         | COHO - F  | ALL FINGERLINGS                  |          |        |       |         |
| CREDIT RIVER           |         |         |           |                                  |          |        |       |         |
| Norval Nashville North | 9       | 2009    | Ringwood* | Wild - Credit River / Cobourg Ck | 9        | 27.5   | None  | 8,415   |
| TOTAL - COHO SALMON    |         |         |           |                                  |          |        |       | 8,415   |

 TABLE 7.5. Coho salmon stocked in the Province of Ontario waters of Lake Ontario, 2010.

\* following the hatchery name indicates a partnership hatchery

Ringwood - all fish at Ringwood FCS are produced by the Ontario Federation of Anglers and Hunters and volunteers from Metro East Anglers

| SITE NAME               | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY    | STRAIN/<br>EGG SOURCE      | AGE<br>(MONTHS) | MEAN<br>WT (G) | MARKS  | NUMBER<br>STOCKED |
|-------------------------|------------------|-----------------|-------------|----------------------------|-----------------|----------------|--------|-------------------|
|                         |                  | L               | AKE TROUT - | SPRING YEARLINGS           |                 |                |        |                   |
| LAKE ONTARIO            |                  |                 |             |                            |                 |                |        |                   |
| Cobourg Harbour Pier    | 4                | 2008            | Harwood     | Seneca Lake/Tarentorus     | 16              | 24.2           | AdLV   | 19,692            |
| Coboury harbour Fiel    | 5                | 2008            | Harwood     | Seneca Lake/Tarentorus     | 10              | 34.7           |        | 22,102            |
| Fifty Point CA          | 4                | 2008            | Harwood     | Seneca Lake/Tarentorus     | 16              | 27.9           |        | 20,888            |
|                         | 4<br>5           | 2008            | Chatsworth  | Lake Simcoe (Wild)         | 10              |                | Ad/CWT | 41,815            |
|                         | 5                | 2008            | Harwood     | Seneca Lake/Tarentorus     | 17              | 35.0           | AdLV   | 41,813            |
|                         | 5                | 2008            | Harwood     | Slate Islands/Dorion       | 17              | 41.4           |        | 15,066            |
| North of Main Duck Sill |                  | 2008            | White Lake  | Seneca Lake/Tarentorus     | 17              | 41.4<br>34.0   |        | 10,859            |
| NORTH OF MAIN DUCK SII  | 4                |                 |             |                            |                 |                |        | ,                 |
|                         | 4                | 2008            | Harwood     | Seneca Lake/Tarentorus     | 16              | 29.0           | AdLV   | 12,168            |
|                         | 4                | 2008            | White Lake  | Slate Islands/Dorion       | 16              | 22.8           | AdLV   | 86,822            |
|                         | 4                | 2008            | Harwood     | Michipicoten Island/Dorion | 17              | 35.6           | AdLV   | 32,222            |
| Pigeon Island           | 4                | 2008            | White Lake  | Slate Islands/Dorion       | 16              | 35.8           | AdLV   | 11,429            |
| South of Long Point     | 4                | 2008            | White Lake  | Seneca Lake/Tarentorus     | 15              | 33.9           | AdLV   | 131,192           |
|                         | 4                | 2008            | White Lake  | Slate Islands/Dorion       | 16              | 35.0           | AdLV   | 11,403            |
|                         | 4                | 2008            | Harwood     | Michipicoten Island/Dorion | 17              | 32.5           | AdLV   | 21,190            |
|                         |                  |                 |             |                            |                 |                |        | 478,125           |
|                         |                  |                 | LAKE TRO    | UT - SUB-ADULTS            |                 |                |        |                   |
| LAKE ONTARIO            |                  |                 |             |                            |                 |                |        |                   |
| Fifty Point CA          | 10               | 2008            | Chatsworth  | Michipicoten Island (Wild) | 22              | 216.8          | Ad/CWT | 3,772             |
| TOTAL - LAKE TROUT S    | PRING YEAR       |                 |             |                            |                 |                |        | 478,125           |
| TOTAL - LAKE TROUT S    | -                |                 |             |                            |                 |                |        | 3,772             |
| TOTAL - LAKE TROUT      |                  |                 |             |                            |                 |                |        | 481,897           |

| SITE NAME                         | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY    | STRAIN/<br>EGG SOURCE | AGE<br>(MONTHS) | MEAN<br>WT (G) | MARKS       | NUMBER<br>STOCKED |
|-----------------------------------|------------------|-----------------|-------------|-----------------------|-----------------|----------------|-------------|-------------------|
|                                   |                  | RAI             |             | T - SPRING YEARLINGS  |                 |                |             |                   |
| BRONTE CREEK                      |                  |                 |             |                       |                 |                |             |                   |
| Lowville Park                     | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 15.6           | RV          | 11,873            |
| 2nd Side Road Bridge              | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 15.6           | RV          | 12,033            |
| CREDIT RIVER                      |                  |                 |             |                       |                 |                |             | 23,906            |
| Norval Nashville North            | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 20.7           | RV          | 11,752            |
| Huttonville                       | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 19.1           | RV          | 12,025            |
|                                   |                  |                 |             |                       |                 |                |             | 23,777            |
| HUMBER RIVER<br>King Vaughan Line | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 17.7           | RV          | 16,077            |
| East Branch Islington             | 4<br>5           | 2009            | Harwood     | Ganaraska/Tarentorus  | 12              | 17.7           | RV<br>RV    | 32,228            |
| East Branch Isington              | 5                | 2009            | Haiwoou     | Canaraska/Tarentorus  | 14              | 11.2           | ΓV          | 48,305            |
| LAKE ONTARIO                      |                  |                 |             |                       |                 |                |             | 10,000            |
| Jordan Harbour                    | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 15.9           | RV          | 20,009            |
| Port Dalhousie East               | 4                | 2009            | Normandale  | Ganaraska/Tarentorus  | 12              | 18.8           | RV          | 20,002            |
| North of Main Duck Sill           | 4                | 2009            | Harwood     | Ganaraska/Tarentorus  | 14              | 11.8           | RV          | 5,005             |
| Millhaven Wharf                   | 5                | 2009            | Harwood     | Ganaraska/Tarentorus  | 14              | 11.0           | RV          | 8,011             |
| Glenora                           | 5                | 2009            | Harwood     | Ganaraska/Tarentorus  | 14              | 11.0           | RV          | 7,628             |
|                                   |                  |                 |             |                       |                 |                |             | 60,655            |
| ROUGE RIVER                       |                  |                 |             |                       |                 |                |             |                   |
| Bruce Creek                       | 3                | 2009            | Ringwood*   | Wild (Rouge)          | 10              | 22.5           | None        | 5,000             |
| Little Rouge at steeles           | 3                | 2009            | Ringwood*   | Wild (Rouge)          | 10              | 22.5           | None        | 5,583             |
| Rouge at16th avenue               | 3                | 2009            | Ringwood*   | Wild (Rouge)          | 10              | 22.5           | None        | 5,000             |
|                                   |                  | RA              | AINBOW TROU | JT - FALL YEARLINGS   |                 |                |             | 15,583            |
|                                   |                  |                 |             |                       |                 |                |             |                   |
|                                   | <u>^</u>         | 0000            |             |                       |                 | 45.0           | Dam I I     | 00 100            |
| Norval-Carter Farm                | 9                | 2009            | CRAHH*      | Wild Credit R.        | 17              | 45.0           | Dorsal clip | 23,420            |
|                                   |                  |                 | RAINBOW TR  | OUT - SUB ADULTS      |                 |                |             |                   |
| CREDIT RIVER                      |                  |                 |             |                       |                 |                |             |                   |
| Norval-Carter Farm                | 4                | 2008            | CRAHH*      | Wild Credit R.        | 24              | 67.0           | Dorsal clip | 9,220             |
|                                   |                  |                 |             |                       |                 |                |             |                   |
| TOTAL - RAINBOW TRO               |                  | YEARLINGS       |             |                       |                 |                |             | 172,226           |
| TOTAL - RAINBOW TRO               | OUT YEARLIN      | GS              |             |                       |                 |                |             | 23,420            |

\* following the hatchery name indicates a partnership hatchery

TOTAL - RAINBOW TROUT

TOTAL - RAINBOW TROUT SUB ADULTS

CRAAH - Credit River Anglers Association Hatchery

Ringwood - all fish at Ringwood FCS are produced by the Ontario Federation of Anglers and Hunters and volunteers from Metro East Anglers

9,220

204,866

| SITE NAME                        | MONTH<br>STOCKED | YEAR<br>SPAWNED | HATCHERY | STRAIN / EGG SOURCE                                                                 | AGE<br>(months) | MEAN<br>WT (g) | MARKS        | NUMBER<br>STOCKED |
|----------------------------------|------------------|-----------------|----------|-------------------------------------------------------------------------------------|-----------------|----------------|--------------|-------------------|
|                                  | OTOORED          | OFAMILE         | A        | MERICAN EEL - ELVERS                                                                | (monting)       | WT (g)         |              | OTOORED           |
| Bay of Quinte, Lake On           | itario (Hay Ba   | y area)         |          |                                                                                     |                 |                |              |                   |
| Hay Bay - north shore            | 6                | 2009            | private  | Wild collection of 4.296 kg of glass eels<br>from the Sissiboo River in Nova Scotia | 16              | 0.1            | Tetracycline | 29,730            |
| Hay Bay - Ram Island             | 6                | 2009            | private  | Wild collection of 5.403 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 37,391            |
|                                  |                  |                 |          |                                                                                     |                 |                |              | 67,121            |
| ST. LAWRENCE RIVER               | (Mallorytowr     | h Landing area  | ı)       |                                                                                     |                 |                |              |                   |
| Squaw Island                     | 6                | 2009            | private  | Wild collection of 1.055 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 7,301             |
| Squaw Island                     | 6                | 2009            | private  | Wild collection of 0.809 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,599             |
| North end of Grenadier<br>Island | 6                | 2009            | private  | Wild collection of 0.801 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,543             |
| North end of Grenadier<br>Island | 6                | 2009            | private  | Wild collection of 0.748 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,176             |
| North end of Grenadier<br>Island | 6                | 2009            | private  | Wild collection of 0.809 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,599             |
| Jones Creek                      | 6                | 2009            | private  | Wild collection of 0.759 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,253             |
| Jones Creek                      | 6                | 2009            | private  | Wild collection of 0.824 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,702             |
| Savage Island                    | 6                | 2009            | private  | Wild collection of 0.812 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,619             |
| Butternut Bay                    | 6                | 2009            | private  | Wild collection of 0.832 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 5,758             |
| Butternut Bay                    | 6                | 2009            | private  | Wild collection of 0.877 kg of glass eels from the Sissiboo River in Nova Scotia    | 16              | 0.1            | Tetracycline | 6,069             |
| Landon's Bay east                | 7                | 2009            | private  | Wild collection of 1.25 kg of glass eels from the Sissiboo River in Nova Scotia     | 17              | 0.1            | Tetracycline | 8,651             |
| Landon's Bay west                | 7                | 2009            | private  | Wild collection of 1.25 kg of glass eels from the Sissiboo River in Nova Scotia     | 17              | 0.1            | Tetracycline | 8,651             |
|                                  |                  |                 |          |                                                                                     |                 |                |              | 74,921            |
| TOTAL - AMERICAN E               | EL               |                 |          |                                                                                     |                 |                |              | 142,042           |

# TABLE 7.8. American eel stocked in the Province of Ontario waters of Lake Ontario, 2010.

## 8. Biological Diversity of Lake Ontario's Fish Species

#### 8.1. Introduction

OMNR works with many partners – government agencies, non-government organizations and interested individuals at local, provincial and national levels – to monitor, protect and restore the biological diversity of fish species in the Lake Ontario basin (including the lower Niagara River and the St. Lawrence River downstream to the Quebec-Ontario boarder). Native species restoration is the center piece of LOMU's efforts to restore the biodiversity.

A number of native fish species have been lost or persist in low numbers in the Lake Ontario basin. Table 8.1.1 lists twenty-three fish species that formerly occurred or are currently 'rare' in the Lake Ontario basin. The blackfin cisco (note that there is debate about historic existence of blackfin cisco in Lake Ontario), the Lake Ontario Kiyi, and blue pike (a subspecies of walleye) are thought to be extinct. Four species, Atlantic salmon, lake trout, bloater, and shortnose cisco have been extirpated (i.e. local extinction) from the Lake Ontario basin. Four species, American eel, burbot, deepwater sculpin and lake sturgeon that were once very common in the basin are now rare. The remaining species on this list were either uncommon historically or their historic status is uncertain. In addition, we acknowledge that there may be other species (small cyprinids for example) that may have been present historically but were lost prior to their documentation of their presence in the basin.

Section 8.2 following describes the planning and efforts to restore Atlantic salmon, American eel and deepwater Ciscoes. Success restoring these native species would be a significant milestone in improving Ontario's biodiversity. Observations of other rare fish species in Lake Ontario and its tributaries during 2010 included:

Burbot: 2 specimens observed, one at Rocky Point and one at Wellington, see Section 2.2;

Deepwater Sculpin: 2 specimens captured in eastern Lake Ontario, see Section 2.2;

Round Whitefish: 2 specimens captured in Lake Ontario near Cobourg, see Section 2.2;

Spotted Gar: 1 specimen captured in Hamilton Harbour, see Section 2.5;

Grass pickerel: 1 specimen captured in upper St. Lawrence River, see Section 11.1;

Pugnose shiner: 20 specimens captured at 6 sites in upper St. Lawrence River, see Section 11.1.

Section 8.3 provides an update on the status of the two most recent non-native fish species to invade Lake Ontario, Round Goby and Chain Pickerel.

#### 8.2 Native Species Restoration

Atlantic Salmon—Lake Ontario Atlantic Salmon Restoration Program (LOASRP)

Atlantic salmon were extirpated from Lake Ontario by the late 1800s, primarily as a result of the loss of spawning and nursery habitat in streams. As a top predator, they played a key ecological role in the offshore fish community. They were a valued resource for aboriginal communities and early Ontario settlers. As such, Atlantic salmon are recognized as an important part Ontario's natural and cultural heritage.

A unique partnership has been established to help bring back wild, self-sustaining populations of Atlantic salmon to Lake Ontario. This partnership, launched in 2006, brings together the Ministry of Natural Resources and the Ontario Federation of Anglers and Hunters (OFAH) and a strong network of partners and sponsors.

Australia's Banrock Station is lead sponsor for this initiative and committed \$1.25 million to LOASRP during the first 5-year phase of the program (Phase I). Banrock Station is a world leader in their corporate commitment to the environment, supporting conservation projects world-wide. LOASRP is the largest project they have supported outside of Australia.

The LCBO adopted Atlantic salmon as the "flagship" species for its Natural Heritage Fund and committed \$250,000 to LOASRP during Phase I.

Many other conservation organizations, corporations, community groups and individuals are contributing to this program.

| Name                                                                                                | Status in Lake Ontario Basin                                                                                                                                                          | ESA<br>Designation | SARA Designation                                                         |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------|
| American Eel, Anguilla rostrata                                                                     | Historically very abundant throughout the nearshore zone of the basin; now rare.                                                                                                      | Endangered         | No Status, proposed as<br>Special Concern Pending<br>public consultation |
| Atlantic Salmon (Lake Ontario population), Salmo salar                                              | Historically abundant throughout Lake Ontario and major tributaries; Extirpated prior to 1900; restoration efforts underway.                                                          | Extirpated         | Extinct                                                                  |
| Black Redhorse, Moxostoma<br>duquesnei                                                              | Historic abundance unclear.                                                                                                                                                           | Threatened         | No Status, proposed as<br>Threatened pending<br>public consultation      |
| Blackfin cisco,<br>Coregonus nigripinnis                                                            | Historically abundance in offshore pelagic zone is unclear; thought to have become extinct by 1900.                                                                                   |                    | Threatened                                                               |
| Bloater, Coregonus hoyi                                                                             | Historically abundant in offshore pelagic zone; extirpated; last recorded in 1983.                                                                                                    |                    | Not at Risk                                                              |
| Blue Pike, Sander vitreus glaucus                                                                   | Historically abundant in western Lake Ontario and Niagara River; extinct prior to 1970.                                                                                               | Extinct            | Extinct                                                                  |
| Bridle Shiner, Notropis bifrenatus                                                                  | Historic abundance unclear; Currently at low abundance<br>in upper St. Lawrence River and tributaries, as well as<br>Napanee River and Bay of Quinte.                                 | Special<br>Concern | Special Concern                                                          |
| Burbot, Lota lota                                                                                   | Abundant in the offshore zone up to the 1920s; declined steadily to virtual extirpation by about 1950; now rare.                                                                      |                    |                                                                          |
| Channel Darter, Percina copelandi                                                                   | Historic abundance unclear but occurred in the upper St.<br>Lawrence River; currently found at low abundance in<br>Moira River (including the Skootamatta River) and<br>Salmon River. | Threatened         | Threatened                                                               |
| Cutlip Minnow, Exoglossum<br>maxillingua                                                            | Historic abundance unclear; Currently at low abundance in St. Lawrence River and tributaries.                                                                                         | Threatened         | Not at Risk                                                              |
| Deepwater Sculpin (Great Lakes<br>population), Myoxocephalus<br>thompsonii                          | Historically very abundant in offshore pelagic zone; currently rare.                                                                                                                  |                    | Special Concern                                                          |
| Grass Pickerel, <i>Esox americanus</i> vermiculatus                                                 | Historic abundance unclear; currently in low abundance in St. Lawrence River, Lake Consecon, Wellers Bay.                                                                             | Special<br>Concern | Special Concern                                                          |
| Lake Chubsucker, Erimyzon sucetta                                                                   | Present in wetlands that drain into the lower Niagara<br>River. Not observed until 1949, may always have been<br>rare.                                                                | Threatened         | Threatened                                                               |
| Lake Ontario Kiyi, Coregonus kiyi orientalis                                                        | Historically abundant in offshore pelagic zone; extinct; last recorded in 1964.                                                                                                       |                    | Extinct                                                                  |
| Lake Sturgeon (Great Lakes and<br>Western St. Lawrence<br>populations), <i>Acipenser fulvescens</i> | Common in the nearshore zone and large tributaries throughout the basin prior to 1900; now rare.                                                                                      | Threatened         | No Status, proposed as<br>Threatened pending<br>public consultation      |
| Lake trout, Salvelinus namaycush                                                                    | The most abundant piscivore in the offshore zone up to<br>the 1920s; declined steadily to virtual extirpation by<br>about 1950; Restoration efforts underway.                         |                    |                                                                          |
| Pugnose Shiner, Notropis<br>anogenus                                                                | Historic abundance is unclear; currently at low abundance in Thousand Islands area of St. Lawrence River.                                                                             | Endangered         | Endangered                                                               |
| Redside Dace, Clinostomus elongatus                                                                 | Historic abundance unclear, but occurred in tributaries from Oshawa to Hamilton; currently rare.                                                                                      | Endangered         | Special Concern                                                          |
| River Redhorse, Moxostoma carinatum                                                                 | Historic abundance unclear; currently at low abundance in Bay of Quinte and Trent River.                                                                                              | Special<br>Concern | Special Concern                                                          |
| Shortnose Cisco, Coregonus<br>reighardi                                                             | Historically abundant in offshore pelagic zone;<br>extirpated; last recorded in 1964.                                                                                                 | Endangered         | Endangered                                                               |
| Silver Shiner, Notropis photogenis                                                                  | Historic abundance unclear; currently at low abundance in Bronte Creek.                                                                                                               | Special<br>Concern | Special Concern                                                          |
| Spotted Gar, Lepisosteus oculatus                                                                   | Limited historic abundance in sheltered nearshore zone;<br>three recent observations in Hamilton Harbour, the Bay<br>of Quinte, and East Lake.                                        | Threatened         | Threatened                                                               |

TABLE 8.1.1. Status of 'rare' fishes in the Lake Ontario basin and their designation (as of December 31, 2010) under the Ontario Endangered Species Act (ESA) and the Canadian Species at Risk Act (SARA).

Funding and in-kind support from all partners have contributed to enhanced fish production, habitat rehabilitation and stewardship initiatives, a research and assessment program and public education and outreach activities.

Restoration efforts in Phase I have been focused on three "best-bet" streams – the Credit River, Duffins Creek and Cobourg Brook. These systems offer good quality spawning and nursery habitat for Atlantic salmon and community support is strong. Demonstrated success in these systems will pave the way for restoration of Atlantic salmon to other suitable streams in future phases of the program.

Three broodstocks from different source populations in Nova Scotia, Quebec and Maine have been established and are currently housed at OMNR's Harwood Fish Culture Station. The performance of all three strains will be evaluated in the Lake Ontario environment.

We have designed a long-term study to compare the effectiveness of stocking spring fingerlings, fall fingerlings and spring yearlings for the purpose of restoration. Genetic profiles have been developed for each individual brood fish in the hatchery to help us track their progeny in the streams and in the lake.

More than 2.6 million Atlantic salmon, of various life stages, were stocked during Phase I. Significant returns of adults to the Credit River were observed in 2008, 2009 and 2010. Measures continue to be taken to improve access to upstream spawning habitat through the removal or modification of barriers and installation of fishways.

Thousands of students from schools and outdoor education centres have participated in a classroom hatchery program designed to actively involve youth in local restoration efforts. Thousands of staff, partner and volunteer hours have been logged on almost 100 stream habitat protection and enhancement projects.

To find out more about the program, meet our partners and discover volunteer opportunities, please visit http://www.bringbackthesalmon.ca/.

#### American Eel

American eel is identified as an *Endangered* species under Ontario's Endangered Species Act (ESA). In addition, the Committee on the Status of Endangered Wildlife in Canada recommended that American eel be identified as a species of Special Concern under the Canadian Species at Risk Act (Table 8.1.1). These designations have lead to additional efforts to protect American eel in Ontario. Several actions were taken by MNR's partners and the Lake Ontario Management Unit during 2010 to address the low abundance of eel.

MNR and Ontario Power Generation (OPG) have collaborated on the operation of the eel ladder at the R.H. Saunders Hydroelectric Dam since 1974. During 2009, OPG made major modifications to the Saunders eel ladder. An extension pipe was built between the original exit of the eel ladder, on the fore-bay deck of the generating station, and extended to a site located 300 m upstream from the station where the new exit of the eel passage facility is located. In addition, the climbing substrate of the eel ladder was replaced by a moulded plastic substrate with studs similar to the ones installed at the other eel ladders in the St. Lawrence River. The new substrate and ladder was also covered with aluminium covers to shade the eels during passage and prevent access by potential predators.

The Saunders eel ladder was opened on Jun 15 and closed on Oct 25, 2010 (132 days). Continuous counts of eel migration activity were obtained by a photoelectric counter at the top of the ladder (Fig. 8.2.1) with the exception of the period between Sep 21 and Oct 15 when the counter was out of operation and manual counts were made. The electronic counts were compared to manual counts at least once a week throughout the migration season. The overall error of the electronic counter compared to manual counts was 0.9% for the entire 2010 season. During 2009 and 2008, the error rate was 0.4% and 2.1%, respectively. Ninety-eight percent of the eels exited the facility

200 180 160 day 140 Number of eels pe 120 100 80 60 40 20 15-Jun 29-Jun 13-Jul 27-Jul 10-Aug 24-Aug 07-Sep 21-Sep 05-Oct

FIG. 8.2.1. The numbers of eel counted at the top of the eel ladder located at the R.H. Saunders Hydroelectric Dam during 2010.

between 23:00 h and 6:00 h - a dramatic change from previous years when eels were observed at all hours of the day. The average travel time of tagged eels traveling the entire facility during 2009 and 2010 was around 2 to 3 hrs. The average time to travel the eel ladder (without extension and new climbing substrate) reported in previous studies conducted from 1997 -2001 varied between 15.1 and 24.2 hrs.

A sub-sample of 142 eels were collected from the ladder and sampled for biological characteristics during 2010. The average length (366 mm, range 245-572 mm, Fig. 8.2.2) was the one of the smallest observed since the ladder opened in 1974 and continued the trend of declining size that started in Age distribution of the eels samples ranged 2004. from 2 to 9 years (mean  $4.95 \pm 1.5$  yrs). All eels from the sub-sample were determined to be female and an oxytetracycline mark was present on two of the eels indicating that these fish were from a stocking program.

A total of 961 eels successfully exited the eel passage facility (Fig. 8.2.3). The first record during 2010 occurred on Jun 15 and the last one on Oct 15. The 31-day peak period of eel activity was Jul 3 - Aug 2 (23.9 eels / day, 77% of total) with the highest daily count (172 eels) occurring on Jul 21st. The total number in 2010 is the second lowest abundance recorded. Adjustments required to optimize the operation of the modified ladder may have contributed to the low number and size of eels during 2009 and 2010, however the numbers of eels climbing the new ladder on the Moses portion of the dam should be considered.

The numbers of eels moving up the ladders located at the Moses (38,173 eels) which is the highest number recorded since this ladder opened during 2006.

550

500

450

400

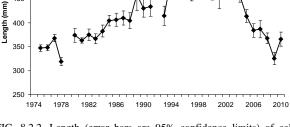



FIG. 8.2.2. Length (error bars are 95% confidence limits) of eel migrating upstream through the eel ladder located at the R.H. Saunders Hydroelectric Dam, 1975-2010.

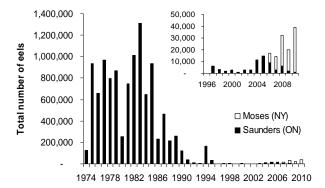



FIG. 8.2.3. Total number of eels ascending the eel ladder(s) at the Moses-Saunders Dam, Cornwall, Ontario for 1974-2010. No counts are available for 1996.

Combined, 39,134 eels passed the two ladders located at the Moses-Saunders Dam during 2010. This number was the largest observed since 1994 (163,518 eels), and continues the general trend of increasing numbers since 2001. However, the numbers migrating upstream last year are still less than 3% of the numbers of eel observed during the early years of the ladder's operation (Fig. 8.2.3, over 600,000 eels per year during the 1970s and 1980s).

The abundance of larger 'yellow' eels in the upper St. Lawrence River (USLR) and eastern Lake Ontario (ELO) was measured with three assessment programs during 2010. Bottom trawling in the Bay of Quinte has been conducted since 1972 as part of the fish community index program (see Section 2.3). The average catch of American eel in 372 trawls conducted between 1972 and 1996 was 1.68 eels per trawl; however, no eels were captured in the 416 trawls conducted between 2003 and 2010.

Quantitative electrofishing was conducted during 2010 in the Mallorytown area (USLR) and Main Duck Island - Yorkshire Bar area (ELO) by Dr. J. Casselman and L. Marcogliese of Queens University with the financial support provided by the Ontario Ministry of Natural Resources. Eel abundance in the USLR was  $1.598 \pm 1.297$  eels/hr during daytime surveys and  $8.836 \pm 4.840$  eels/hr during night-time surveys. In the ELO,  $0.086 \pm 0.103$  eels/hr were observed during daytime and  $0.321 \pm 0.468$  eels/hr during night-time (Fig. 8.2.4). Based on the size of eels captured, it appears that fish that originated from stocking programs were observed at both locations.

Nearshore trapnetting was conducted in the upper Bay of Quinte, Hamilton Harbour and Toronto Harbour using the NSCIN fish community index protocol during 2010 (see Section 2.5). All of these areas are within the historical range of the eel and this gear has

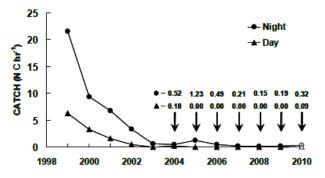



FIG. 8.2.4. Electrofishing catch in numbers caught per hr in the vicinity of Main Duck Island in eastern Lake Ontario, separated by day and night for a recent period of declining abundance, 1999-2010.

been shown to be effective for larger eels; however no eel were captured in the total of 84 net sets.

Lake Ontario Management Unit staff participated in the development of a Recovery Strategy for the American Eel in Ontario. In addition, staff assisted OPG and Fisheries and Oceans Canada in the implement the OPG Action Plan to improve eel abundance in ELO and USLR and improve passage of eel around hydroelectric generating facilities in the St. Lawrence River.

In one component of the OPG plan, staff assisted in health assessment and stocking of a total of 142 thousand glass eel into the USLR and ELO during 2010 (see Section 7.1). All stocked eels were purchased from commercial fisheries in Nova Scotia and were marked with a fluorescent dye to distinguish them from naturally migrating eels. This brings the total number of eels stocked since 2006 to 4.0 million fish. Prior to all stocking, health screening was conducted at the Atlantic Veterinary College, and the testing results for a wide variety of fish pathogens (including *Anguillicoloides crassus*) were all negative for stocked fish.

Fisheries and Oceans Canada conducted electrofishing surveys during the spring and the fall of 2010 near the USLR and Bay of Quinte stocking sites to evaluate the success of eel stocking. During the 154 transect surveyed during the spring average densities of 53.1 (+/- 12.3) and 61.5 (+/- 9.3) eels/ha were observed in the USLR and Bay of Quinte sites respectively. These densities were more than doubled those observed in 2009, reflecting the relatively large numbers of eels stocked in 2009. The 173 transects surveyed during the fall revealed densities of 83.7 (+/- 23.5) and 90.5 (+/-13.2) eels/ha at the USLR and Bay of Quinte sites respectively. The patterns in fall density estimates were less consistent; there was a 60% increase in the number

very few eels were stocked in 2010, and age-0 eels usually make up a high proportion of the catch, and second, additional areas (Hay Bay, Big Bay) were included in the fall sampling estimates for the first time. These surveys suggest that eels are surviving well at stocking sites and some sites nearby.

While no targeted efforts were made toward assessing dispersal in 2010, reports of stocked American eel occurrence continue to be made by other agencies. Fisheries and Oceans Canada Sea Lamprey Control Program captured small, presumably stocked American eel in Cobourg Brook and the Rouge River for the second consecutive year and in the Humber River for the first time. Small, presumably stocked American eel were captured above the first barrier in a number of Bay of Quinte tributaries (Trent, Salmon and Napanee rivers) during Ontario Ministry of Natural Resources research surveys. As well, Royal Botanical Garden staff captured an American eel in the Hamilton Harbour fishway, and Ministry of Natural Resources staff captured an eel in Lake Simcoe. Both of these eels were large enough that they could have been natural migrants.

Eels from each of the five year classes stocked (2006–2010) were sampled by Fisheries and Oceans Canada during their electrofishing surveys, and length and weight at age, and biomass per hectare were calculated. Growth rates were very high, approximately 100 mm / yr, even for newly stocked eels recaptured in the autumn. Biomass estimates continue to increase as the stocked fish grow. Gender assessment confirmed the presence of stocked male American eel in Lake Ontario for the second year in a row, though the proportion of males declined from 2009. All of the eels aged by otolith showed the fluorescent oxytetracycline mark indicative of stocking.

In the autumn of 2009 and 2010, for the first time in living memory, fishermen from the silver eel fishery in the St. Lawrence River estuary reported the capture of very small silver eels to the Quebec Ministère des Ressources Naturelles et de la Faune (MRNF). Both mature female eels (about 65 cm length) and mature male eels (about 30 cm) were observed. The majority of these fish had oxytetracycline marks proving that they were stocked fish. Since eels from the Lake Ontario – St. Lawrence River system usually do not mature until about age 20, this early maturation is difficult to explain. It may be due to extremely rapid growth rate by young stocked eel in an environment that had never been previously colonized by very young eel and where there is limited intra-specific competition. Some have also hypothesized that it may be due to some unknown mechanism of stock differentiation between stocked Maritime eel and natural migrants to this system.

In a second component of the OPG Action Plan, MNR staff assisted in the capture, tagging and transport of large yellow eels from the USLR, ELO and Lake St. Francis (LSF) to Lac St. Louis (a section of the St. Lawrence River below all barriers to downstream migration). This study is a continuation of the project conducted in 2008 and 2009 which was undertaken by OPG as a pilot project to investigate the economics and practical feasibility of this alternative for mitigating turbine mortality at the Saunders GS during the downstream migration of mature silver eels. The project also involved local commercial fish harvesters, Akwesasne First Nation and Quebec MRNF.

A total of 234 large eels (minimum size > 80 cm or approximately 2.5 lb) were taken by 15 license holders from mid April-Jun 20 as a by-catch in the existing spring hoop and trap net fisheries in USLR and ELO (upstream of the Moses-Saunders Dam). The LSF fish harvesters (2 licences) also participated in the spring fishery and captured 1,485 eels. The catch rates in the USLR-ELO and LSF were 0.03 and 0.71 eels/net night, respectively. This suggests, as observed in previous studies, that yellow eel abundance is much higher in LSF than in the USLR-ELO. Eels from USLR-ELO were transported to holding facilities at the MNR's Glenora Research Station. In the case of eels from LSF, eels were transferred to a facility at Bainsville, Ontario. At both locations a passive integrated transponder (PIT) tag was implanted in each eel for subsequent identification and morphometric data were collected.

In 2010, 751 large yellow eels from LSF and 234 from the USLR-LO were released from shore at four locations in Lac St. Louis immediately downstream of the Beauharnois GS. Another 734 eels collected from LSF were returned to LSF as a reference sample. During the release program, all the eels were observed to be in good health. The mortality rate during capture and holding was 5 eels (0.3 % of catch) including 4 eels from LSF and 1 eel from the USLR-LO.

To monitor the long-term survival, condition, maturation and migration of the transported yellow eels, biologists from Quebec MRNF attempted to recover tagged eels in the silver eel fishery in the St. Lawrence River estuary. In 2010, detection of marked eels occurred from August 15 to November 12. MRNF sampled all 13 fish harvesters and scanned about 85.2 % of the total harvest (13,725 silver eels) about the same number as in 2009. Ninety-eight PIT tags from the OPG trap and transport study were detected and another 128 PIT tags came from previous studies conducted near Moses-Saunders GSs from 1997 to 2001.

The trap and transport project has been successful in demonstrating that most large yellow eels can be held in captivity, tagged, transported and released without obvious detrimental effects. In addition, longer term effects of trap and transport on eels can likely be evaluated by monitoring transported eels in the silver eel fishery in the St. Lawrence estuary. Lastly it appears that transported eels migrate at higher rate in the first year of transport when compared to reference eels. However, two years after their release the percentage of reference vs. transported eels migrating through the St. Lawrence Estuary from the trap and transport program is similar.

# **Deepwater Ciscoes**

Until the mid 1950's, Lake Ontario was home to a very diverse assemblage of deepwater ciscoes including bloater (Coregonus hoyi) kiyi (C. kiyi), shortnose cisco (C. reighardi) and possibly blackfin cisco (C. nigripinnis). Currently, only the shallow-water form of lake herring (C. artedi) remains in Lake Ontario. The Lake Ontario Committee's goal is to establish a selfsustaining population of deepwater cisco in Lake Ontario within 25 years. Objectives and associated strategies are specified in a draft strategic plan currently under review. The plan addresses sources of gametes, culture facilities, culture capacity, stocking targets, detection of wild fish, increasing our understanding of ecological consequences, research needs, and public education. Potential benefits of restoring deepwater cisco include increasing the diversity and resilience of the food web, increasing wild production of salmon and trout by reducing thiaminase impacts of a diet based on alewife and rainbow smelt, supporting a small commercial fishery, restoring historical food web structures and function and increasing trophic transfer efficiency. Potential risks relate to the unpredictability of food web interactions in an evolving Lake Ontario ecosystem. Accepting some risk and uncertainty, doing the necessary science to increase understanding and minimize risk, and adapting management strategies accordingly are prerequisites for successful restoration of deepwater cisco in Lake Ontario.

In 2010, approximately 117,000 fertilized bloater eggs were collected from Lake Michigan with the help of local commercial fisherman and personnel from the United States Fish and Wildlife Service and transferred to New York State Department of Environmental culture facilities in Cape Vincent, NY. All adults used for gamete collection were free of disease. Fertilization rates were approximately 30% and only approximately 5,000 fish hatched. The surviving hatched fish reached a maximum size of approximately 13 mm, but hatched larvae did not feed well on commercially available fish food and none survived to be stocked into Lake Ontario. Plans are to continue to collect eggs from Lake Michigan and explore collection opportunities in Lakes Huron and Superior, improve culture facilities and procedures at Cape Vincent, and bring additional culture facilities on line at United States Geological Survey Laboratory at Tunison, New York and at the Ontario Ministry of Natural Resources Facility at White Lake, Ontario.

### 8.3. Non-native Species

#### Round Goby

Round Goby invaded western Lake Ontario in 1998 and were first reported in the Bay of Quinte in 1999 and first captured in routine Bay of Quinte assessment bottom trawls in 2001 and gillnets in 2002. Goby distribution expanded to include all areas of eastern Lake Ontario and the Bay of Quinte to depths of at least 36 m by 2006.

Goby abundance was high in offshore areas of the Bay or Quinte by 2003, declined rapidly after 2004 in gill net catches but stabilized at relatively high levels in the bottom trawls (see Sections 2.2 and 2.3). This observation suggests that while large Round Goby, vulnerable to gill net gear, were included in the goby size structure soon after goby invasion, after 2004 the goby size structure included primarily smaller individuals. Goby also appeared in the diet of many piscivores in the Bay of Quinte in 2003.

In Lake Ontario, Round Goby abundance in gillnets increased until 2007, declined in 2008 and remained stable in 2009 and 2010. (see Sections 2.2 and 2.3). In bottom trawls, Round Goby catches in the Kingston Basin remained very high or increased in 2010.

#### Chain Pickerel

The Chain Pickerel (Esox niger) is a small to mediumsized member of the pike family (Esocidae). The species prefers warm water, usually inhabits sluggish streams and heavily vegetated lakes, and is a top predator in the fish community. Its native range is primarily the Atlantic coastal plain on the east side of the Allegheny-Appalachian Mountains in the eastern United States. Introductions and range expansions have resulted in a distribution that now extends west of the Allegheny-Appalachian Mountains. The Canadian distribution of Chain Pickerel includes Ouebec (south of the St. Lawrence River and east of Montreal). southern New Brunswick and Nova Scotia. Their status is Not At Risk in Canada. The species is not native to New Brunswick or Nova Scotia and its native status in Quebec seems uncertain.

The first Chain Pickerel collected in Ontario and the first on the northwest side of the St. Lawrence River in Canada was caught by a local commercial fisherman in April 2008. Since 2008, five additional specimens were caught: three in 2009 and three more in 2010. All were captured in the eastern Lake Ontario and Thousand Islands area of the St. Lawrence River. All individuals were mature adults in robust condition. The appearance of Chain Pickerel in these Ontario waters may signal a range expansion of this species from New York State waters where the species appears to have increased in abundance in recent years. While not yet a major species locally, the potential future impact of this species on the nearshore ecosystem is not known.

# 9. Management Planning

# 9.1 Fisheries Advisory Council for Zone 20 (Lake Ontario / St. Lawrence River)

The Zone 20 Fisheries Advisory Council provides recommendations to the Lake Ontario Manager regarding the recreational fishery. In 2010 the zone 20 council began operating under a new geographically based structure. The former zone–wide council was split to form two new sub-councils with one representing the east end of Lake Ontario and the St. Lawrence River and the second representing the western basin of Lake Ontario. This restructuring led to the addition of four new committee members. Ultimately, the reorganization has allowed for more focussed discussions on regional interests.

The two sub-councils met a total of 10 times in 2010. Issues discussed included pen imprinting of Chinook salmon, the development of a stocking strategy for Lake Ontario, the development of new fish community objectives for Lake Ontario, and the review of regulations for Common Carp, Muskellunge, and Rainbow Trout. A rainbow trout harvest regulation proposal has been developed and is currently open for public comment. In addition, the council provided significant assistance with the collection of data in support of the Lake Ontario Chinook salmon mass marking study.

# 9.2 Lake Ontario and St. Lawrence River Commercial Fishing Liaison Committee

The Lake Ontario and St. Lawrence River Commercial Fishing Liaison Committee (LC) provides recommendations to the Lake Ontario Manager regarding their concerns and issues and in response to MNR's proposed actions. Members represent fishers in different management zones, buyers/processors, and the Ontario Commercial Fisheries' Association (OCFA). The LC provides a unique forum for dialogue between the Lake Unit and the commercial industry.

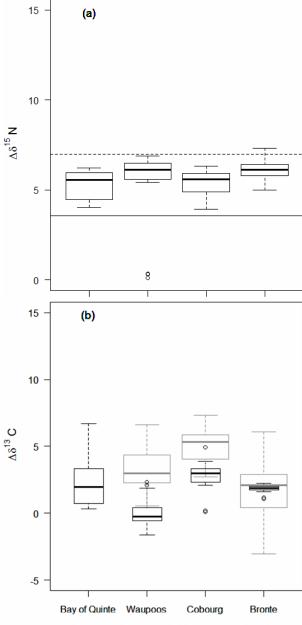
Management actions were presented to all licensed commercial fishers at the Annual General Meeting during April 2010. The Ontario Commercial Fishery Policy review was also presented at this time and updates were provided during subsequent meetings of the LC. The LC met five times during 2010. Action items discussed included the revision of some license conditions; the eel trap, truck and transfer project; a proposal by MNR about set duration times; and the revision of quotas in response to reduced catch per unit effort in both commercial and MNR fishing gear. Issues related to the harvest of fish with special restrictions related to contaminants were also discussed. Most issues were deferred pending the outcome of the Commercial Fishery Policy review.

#### 9.3 Fisheries Management Plans

The Bay of Quinte Fisheries Management Plan and the Hamilton Harbour and Watershed Fisheries Management Plan were recently approved as fisheries management policy. The purpose of these plans is to guide the sustainable management and use of the fish resources of the respective waterbodies and watershed. The goal of the Bay of Quinte Fisheries Management Plan is to identify and resolve fisheries issues, manage the resource in a sustainable manner, and encourage communication between government and stakeholders. The goal of the Hamilton Harbour and Watershed Fisheries Management Plan is to support diverse, wellbalanced, and healthy aquatic ecosystems that provide sustainable benefits to meet society's present and future needs.

Copies of these fisheries management plans are available at: http://www.mnr.gov.on.ca/en/Business/ LetsFish/2ColumnSubPage/251350.html.

# **10. Research Activities**


#### **10.1** Hemimysis

#### Hemimysis - the bloody red shrimp in Lake Ontario

Collaborators: Michael Yuille (M.Sc. candidate), Liang Zhang (post-doctoral fellow), Michelle Campbell (Hon. B.Sc. candidate), Shelley Arnott and Linda Campbell, Queen's University, in partnership with Fisheries and Oceans Canada, University of Windsor, St. Lawrence River Institute, University of Waterloo, Cornell University and the U.S. Geological Survey.

Aquatic invasive species are second only to habitat loss as a threat to the long-term sustainability of the recreational and commercial fisheries of the Great Lakes. Over 180 aquatic invasive species preceded Hemimysis anomala (hereafter Hemimysis) in establishing populations in the Great Lakes, with an estimated annual impact of tens to hundreds of millions of dollars. Hemimysis is a small, nearshore, shrimp native to eastern Europe that likely arrived via ballast water around 2006. No native organism shares a similar ecological role to Hemimysis, making the impacts both uncertain and potentially of great magnitude. Our research, started in 2008, has shown *Hemimysis* can reach high densities (>1,800 /  $m^2$ ), resulting in part from their production of 3 generations per year. Hemimysis consume a variety of prey at the base of the food web including algae and zooplankton (tiny animals that young fish eat), which has affected both water quality and fish production in invaded European lakes. In the past 2 years, we have examined over 3,000 fish stomachs across a gradient of density of Hemimysis and found little evidence of fish consuming this invasive prey (less than 1% of the total stomachs examined contained Hemimysis). Laboratory feeding preference experiments have shown yellow perch, an abundant and economically important fish, do consume Hemimysis and actually select it over a common prey item (amphipods) especially in rocky habitats. Further laboratory experiments revealed that the digestion rate for Hemimysis is extremely rapid, less than 1-2 hours at normal water temperatures, so we may simply be unable to detect their presence using traditional methods. A DNA-based screening tool is being developed in partnership with the University of Windsor (Lucia Carreon-Martinez and Daniel Heath) to find evidence of Hemimysis in fish stomachs even after the prey item has been digested. In addition, through the use of stable isotopes (chemical tracers naturally occurring in the environment), we have found evidence of shifts in feeding pathways suggesting

higher incorporation of *Hemimysis* in plankton-eating fish diets (alewife & yellow perch) at sites with higher density of *Hemimysis*, coinciding with areas where *Hemimysis* have been in the food web longer (> 3 years). Collectively these results (Fig. 10.1.1) suggest that *Hemimysis* are becoming incorporated into the



Location (low to high Hemimysis density)

Fig. 10.1.1.  $\Delta \delta^{15}$ N and  $\Delta \delta^{13}$ C of alewife (Alosa pseudoharengus) (a and b, respectively) relative to the  $\Delta \delta^{15}$ N and  $\Delta \delta^{13}$ C of *Hemimysis anomala* (solid line and grey boxplots, respectively). The dashed line in (a) represents a 3.4 ‰ <sup>15</sup>N trophic enrichment of *Hemimysis*. Boxes in (a) that are close to the dashed lines indicate alewife are consuming prey similar to *Hemimysis*. Black boxes in (b) that overlap the grey boxes indicate alewife are consuming prey similar to *Hemimysis*. Combining (a) and (b) suggests alewife from Bronte are consuming *Hemimysis*.

food web. Two questions then arise: 1) are *Hemimvsis* impacting lower trophic levels such that water quality or food resources may be compromised? and 2) will Hemimysis increase energy and contaminant flow to higher trophic levels, possibly resulting in increased loads of contaminants? Collaborating researchers at Fisheries & Oceans Canada, University of Waterloo, and Cornell University are investigating the first question about lower trophic level impacts while our team is exploring the contaminant bioaccumulation question. Preliminary results suggest Hemimysis have not increased the biomagnification potential (how quickly contaminants accumulate in the food web), in part because of our perceived low incorporation of Hemimysis in fish diets. The stable isotope results noted above, including the time-delay before Hemimysis become incorporated in the fish diets, warrant our continued investigation and modelling to better forecast the potential effects of Hemimysis on Great Lakes food webs as this invasive organism continues to expand it's population size and distribution.

#### **10.2 Impediments to Lake Trout Rehabilitation**

# Consequences of Changing Prey Base on Lake Trout Growth and Survival

Collaborators: Scott Rush (post-doctoral), Ken Drouillard, Aaron Fisk, Doug Haffner, Gord Paterson (U Windsor), Michael Arts, Craig Hebert, Daryl McGoldrick (Environment Canada), Brian Lantry (US Geological Survey), John Fitzsimons (Fisheries and Oceans Canada), Ted Schaner (OMNR), Jana Lantry (New York Department of Environmental Conservation). As an apex predator native to the great lakes, lake trout (Salvelinus namaycush) historically influenced the distribution of some prey fish species and cycled energy between offshore benthic and pelagic zones. Over the last three decades however, multiple factors have reduced prey fish abundance in the Laurentian Subsequently, Lake trout have Great Lakes. experienced significant changes in reproduction, survival and distribution and have inspired conservation efforts for this species. Efforts to maintain populations of this important predator however necessitate a thorough understanding of this species trophodynamics (diet and energy requirements), relationships that can vary across an organisms' lifetime. Our work employs naturally occurring chemical tracers (stable isotopes of carbon and nitrogen ( $\delta^{13}$ C and  $\delta^{15}$ N) and fatty acids to explore trophic relationships of lake trout (Salvelinus namaycush) and major prey species (alewife: Alosa pseudoharengus; Mysis: Mysis diluviana; rainbow smelt: Osmerus mordax; round goby: Noegobius melanostomus; and slimy sculpin: Cottus cognatus) within the Great Lakes. Result of our recent work, focused on fish collected from Lake Ontario during 2008, suggests that younger lake trout no longer feed predominately on native prey fish but incorporate higher proportions of the introduced fish, the round goby, in their diets (Fig. 10.2.1). This finding has important implications for understanding the impacts of introduced species, predator-prey dynamics and the ecology of large lake systems. In particular, if the change in habitat use and inclusion of round goby in the lake trout's diet represents a substantial shift in this species' bioenergetics, then this change can have long-

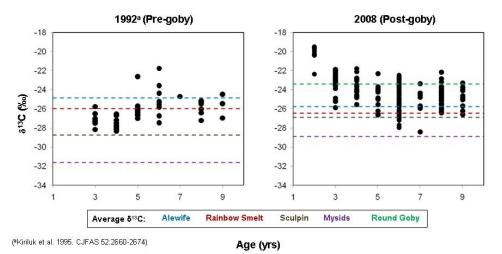



Fig. 10.2.1.  $\delta^{13}$ C of various ages of Lake Ontario lake trout (circles) relative to prey items (horizontal lines). Since 1992, Lake trout carbon isotope signatures have become more positive indicating an increased importance of nearshore/littoral production pathways. Isotopic signature much more representative of the round goby than traditional pelagic prey resources including alewife, smelt and sculpin.

term implications for the lake trout's health, reproduction and population stability. Our ongoing work will help broaden our understanding of these trophic interactions, the structure of these lake communities, and the forces that shape them.

# 10.3 Fish Health

#### Metabolic costs of sub-lethal contaminant exposure

Collaborators: Todd A. Leadley (Ph.D. candidate) and Ken Drouillard, Great Lake Institute for Environmental Research, University of Windsor

Aquatic ecosystems show remarkable resiliency to perturbation and stress, although short-term laboratory and field measurements of stress response tend to predict more catastrophic outcomes. A prime example of population resilience is the response of fish populations to high levels of contaminant exposure: lab toxicity trials using field levels of contaminants lead us to expect substantial mortality in the field, but fish populations persist in heavily contaminated waters. Such observations suggest an adaptive response in the resident fauna: either short-term physiological change (acclimation) or genetic change driven by selection (evolution), or both. Acclimation carries a high energetic cost that could compromise survival or reproductive success suggesting population evolution is necessary for population persistence. As part of a larger project to quantify and integrate stress response measures we will combine intermittent flow respirometry with bioenergetic modelling to partition the toxicological stress response into physiological and genetic adaptive components. More specifically, this study will quantify metabolic costs resulting from long term exposure of an organism to a contaminated environment and whether field metabolic demands can be quantified through respirometry techniques.

Brown bullhead (Ameiurus nebulosus) populations in the Detroit River vary in the degree of exposure to insitu organic contaminants. Previous studies on the these fish populations have demonstrated higher incidences of tumours in brown bullheads from Trenton Channel (lower Detroit River) compared to brown bullheads from less contaminated sites in the Detroit River (e.g. Peche Island). Oxvgen consumption, a surrogate for metabolic rate, was measured in bullheads from both locations across a range of body sizes and temperatures (Fig. 10.3.1). If differences are detected in the standard metabolic rates (SMR) between the two bullhead populations, further respirometry trials will be conducted on both populations following acclimation in clean ponds for approximately one year. These studies will determine if the standard metabolic rate differences between the two populations are retained over time. Further to the above acclimation trials, the SMR of the F<sub>1</sub> generation from both populations will also be determined investigating whether the SMR is an inheritable trait in brown bullheads.

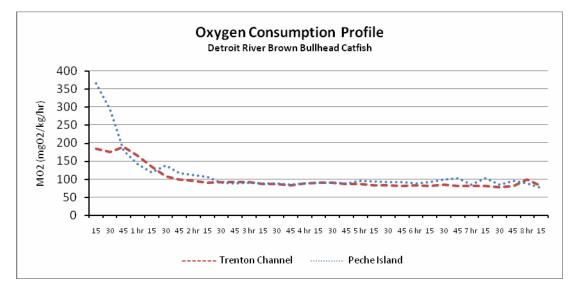



Fig. 10.3.1. An example of an 8 hour oxygen consumption profile of two brown bullhead (*Ameiurus nebulosus*) populations: Trenton Channel (352 g) and Peche Island (180 g).

#### 10.4 Habitat Effects on Food Web Structure

Spatial and Seasonal Variability in Diet of an Invasive Fish Species in Nearshore Habitats of Eastern Lake Ontario

Collaborators: Jaclyn Brush (M.Sc. candidate) and Aaron Fisk, University of Windsor.

Aquatic invasive species (AIS) have been a particular concern in the Laurentian Great Lakes where valuable fisheries and water quality are important ecosystem services. The success of these invaders has been linked to their broad physiological and environmental tolerances, rapid reproduction, and similarity between natal and introduced habitats. Where AIS have successfully established, they have had detrimental impacts on local aquatic food webs.

Food web ecology, the study of feeding relationships among species, has helped ecologists and fisheries managers understand how invasive species act as predators, competitors, or prey, thereby quantifying how these species may alter aquatic food webs. Because lake habitats may differ in temperature, nutrient inputs, or species composition, how these invasive species impact food webs in different areas of a single lake is of particular interest.

The benthic feeding round goby (Neogobius melanostomus) has been regarded as the fastest advancing and one of the furthest spreading of all AIS to establish within the Great Lakes. Round goby likely arrived through ballast-water from the Black and Caspian Sea region in the early 1990's. This small fish has been the cause of a number of ecological and economic problems, including declines in benthic invertebrate abundance, mediating changes in fish community composition through predation and competition, and altering predator feeding behaviour. Several studies have attributed the rapid success of the round goby to its ability to consume zebra and guagga mussels in an otherwise diverse diet, its broad environmental tolerance, aggressive behaviour, and repeat spawning events. These characteristics, along with the small home range of the round goby make it an ideal model species to understand spatial and seasonal trends in diet of an invasive species within different habitats of a single lake system.

We examined spatial and seasonal trends in stomach contents and stable isotopes (naturally occurring compounds that change in predictable ways in food webs) of round goby in two eastern Lake Ontario habitats: warm, productive, and ecological stressed Bay of Quinte (a listed Area of Concern) and the cooler and less productive Kingston Basin. Stomach contents and stable isotopes (Fig. 10.4.1) were variable across site and season, however within a site, stable carbon isotope values indicated that round goby had high sitefidelity. At both sites, benthic invertebrates comprised the bulk of the diet, and reliance on Dreissenid mussels increased from spring to fall. Despite similar diets, stable isotopes indicated different production sources, with greater terrestrial inputs in the Bay of Ouinte and more pelagic inputs in the Kingston Basin. The influence of pelagic carbon on round goby  $\delta^{13}$ C increased with size, resulting from increased consumption of filter-feeding Dreissenid mussels. round goby  $\delta^{15}N$ , or trophic position, increased with consumer size and was higher in the cooler, oligotrophic lake site. Both seasonal and spatial effects must be considered when evaluating feeding behaviour of fishes, especially when considering the impacts of invasive organisms on fish communities.

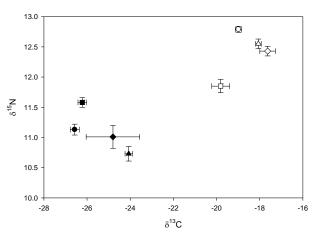



Fig. 10.4.1. Plot of Bay of Quinte (filled) and Kingston Basin (open)  $\delta^{13}$ C and  $\delta^{15}$ N values for round goby in 2009 Summer (square), 2010 Spring (circle), 2010 Summer (triangle) and 2010 Fall (diamond).

# **10.5 Project Quinte**

### Ecosystem Health and Recovery of the Bay of Quinte, Lake Ontario

Project Quinte is a co-operative, multi-agency, research and monitoring project between the federal (Department of Fisheries and Oceans) and provincial governments (Ontario Ministry of Natural Resources) that has investigated the long-term effects of the reduction in point-source phosphorus loadings, food-chain influences and zebra mussel colonization on the trophic dynamics of the entire Bay of Quinte ecosystem. In 2010, the members of Project Quinte held a focused session at IAGLR's 53rd Annual Conference at the University of Toronto (May 17-21)

entitled "Ecosystem Health and Recovery of the Bay of Quinte, Lake Ontario". The main objective of the symposium was to assess the current status of the bay and its recovery in response to the remedial actions undertaken towards delisting. The project Quinte members plan to publish their findings in two special issues of the journal "Aquatic Ecosystem Health and Management". Lake Ontario Management Unit personnel participated in the following contributions.

- Bowlby, J. N. and J. A. Hoyle. Distribution and Movement of Walleye in the Bay of Quinte and Eastern Lake Ontario.
- Brousseau, C.M., R.G. Randall, J.A. Hoyle, and C.K. Minns. Fish Community Indices of Ecosystem Health: Are Index of Biotic Integrity Values at Bay of Quinte Relatively High Compared to other coastal sites in Lake Ontario?
- Hoyle, J.A., O.E. Johannsson, and K.L. Bowen. Larval Lake Whitefish Abundance, Diet and Prey Availability during a Period of Ecosystem change on the Bay of Quinte, Lake Ontario.
- Hoyle J.A., J.N. Bowlby, C.M. Brousseau, T.B. Johnson, B.J. Morrison, and R.G. Randall. Fish Community Structure in the Bay of Quinte, Lake Ontario: The Influence of Nutrient Levels and Invasive Species.
- Johnson, T.B. and J.A. Hoyle. Fish response to aquatic ecosystem change in the Bay of Quinte, Lake Ontario.
- Randall, R.G., C.M. Brousseau, and J.A. Hoyle. Effect of macrophyte density on spatial variability in the abundance and growth of littoral fishes in bays of Prince Edward County, Lake Ontario.

# **11.** Partnerships

# **11.1 St. Lawrence River Seine Netting Survey and** Muskellunge Nursery Site Identification

The "Update of the Strategic Plan for Management of the St. Lawrence River Muskellunge Population and Sport Fishery Phase III: 2003-2010" includes the objective of protection of muskellunge spawning and nursery habitats. These habitats are not well documented or identified within the St. Lawrence River. OMNR conducted a young of-the-year seining program from 1989-1995 in an effort to identify nursery sites within the Canadian waters of the St. Lawrence River. Efforts were discontinued following this period. During 2005-2010, efforts to identify muskellunge nursery habitats were renewed through a partnership between Muskies Canada Inc. (MCI -Gananoque Chapter), Parks Canada (St. Lawrence Islands National Park), Kemptville District MNR, Fisheries and Oceans Canada (Prescott), and the Lake Ontario Management Unit (LOMU).

Fifty-three seining hauls were completed over a period from August 3-28, 2010. A total of 7,083 fish, comprising 33 species were captured during this program. Among the most abundant species captured were Yellow Perch (38%), Round Goby (25%), Pumpkinseed (11%), Largemouth Bass (6%), Rock Bass (5%), Bluntnose Mminnow (5%), Blackchin Shiner (2%), Banded Killifish (2%), Spotfin Shiner (2%), Brook Silverside (1%), and Bluegill (1%). Pugnose shiner (Notropis anogenus), listed as 'endangered' under both the Ontario ESA and Canadian SARA legislation (see Section 8), were captured at 6 sites. Additionally, Grass Pickerel (Esox americanus vermiculatus - listed as 'special concern' under both the Ontario ESA and Canadian SARA legislations) was captured at 1 site. These important observations highlight the importance of seining programs to the identification of biological diversity of the St. Lawrence River.

During 2010, 5 muskellunge were captured at 5 sites. Three of the muskellunge were captured at sites which were not previously confirmed as a muskellunge nursery area, while the remaining 2 were captured at previously confirmed sites. These data are being incorporated into NRVIS mapping of muskellunge nursery habitats by MNR – Kemptville District Office and shared with partner agencies.

#### 11.2 Nearshore Community Index Netting (NSCIN)

Nearshore community index netting (NSCIN), a provincially standardized trapnet program designed originally on inland lakes to evaluate littoral zone fish communities, was initiated on Lake Ontario in the Bay of Quinte from 2001-2005. In 2006, the NSCIN program was conducted on Hamilton Harbour and the Toronto Waterfront area with partnerships involving Ontario Ministry Natural Resources, Fisheries and Oceans Canada, and Toronto Region Conservation Authority. The Ministry of Natural Resources' Lake Ontario Management Unit (LOMU) provided equipment and expertise with the NSCIN program while partners provided experienced staff with local knowledge. The partnerships proved very successful.

The Canada-Ontario Agreement (COA) provided funding for the past four years (2007-2010) of NSCIN projects on a variety of nearshore and embayment location including Hamilton Harbour, the Toronto waterfront area, Presq'ile Bay, Weller's Bay, West Lake, East Lake, Prince Edward Bay, lower and upper Bay of Quinte, Long Reach and Kingston, Thousand Islands, and Lake St. Francis (see Section 2.5 for NSCIN projects completed in 2010). Partnerships are a key delivery mechanism for these field projects. Partnerships to date (2007, 2008 and 2010 field seasons) have included Fisheries and Oceans Canada (2008 and 2010), the Toronto Region Conservation Authority (2007 and 2010), the Raison Region Conservation Authority (2007 and 2008), and local commercial fishers (2007).

Some of the NSCIN project locations are Areas of Concern (AOC) with ongoing Remedial Action Plans (RAP). Fisheries Management Plans (FMP) have been or are being prepared for these AOCs and NSCIN is one of the methods used for setting and evaluating the success of fish community targets. NSCIN projects on non-AOC areas provide the necessary reference sites to help evaluate the status of fish communities/ populations in AOC areas. Other important benefits of the NSCIN projects include commercial fish harvest management and a source of fish for MOEE contaminant sampling.

# 12. Staff 2010

Glenora Fisheries Station, 41 Hatchery Lane, R.R.#4, Picton, ON KOK 2TO Tel: 613-476-2400 Fax: 613-476-7131

# **PROVINCIAL SERVICES DIVISION**

#### Fish and Wildlife Services Branch Lake Ontario Management Unit

Andy Todd - Lake Manager Linda Blake - Administrative Assistant Alastair Mathers - Lake Ontario COA Coordinator Bruce Morrison - Assessment Supervisor Tom Stewart - Program Advisor Great Lakes Ecosystems Jim Bowlby - Assessment Biologist Jim Hoyle - Assessment Biologist Ted Schaner - Assessment Biologist Marc Desjardins - Management Biologist Marion Daniels – Management Biologist (Peterborough) Colin Lake - Operations Supervisor Kelly Sarley - Database Technician Computer Operator Dale Dewey – Operations Coordinator, Operations Supervisor (Acting) Wayne Miller - Senior Technician Base Operations Jon Chicoine – Vessel Master Dave Goodfellow - Great Lakes Technician Tom Lawrence - Great Lakes Technician Steve McNevin - Great Lakes Technician Kristen Wagner - Project Biologist Nina Jakobi - Project Biologist Alan McIntosh - Boat Captain Gord Meadows - Great Lakes Fisheries Technician Tim Dale - Great Lakes Fisheries Technician Tyson Scholz - Great Lakes Fisheries Technician Sonya Kranzl – Great Lakes Fisheries Technician Matt Brown - Great Lakes Fisheries Technician Steve Wickens - Great Lakes Fisheries Technician Megan Davies - Great Lakes Fisheries Technician Casev Reilly - Great Lakes Fisheries Technician Evan Hall - Student Biologist Hajra Mazhar - Student Biologist Mary Hanley - Student Fisheries Technician Scott King - Student Fisheries Technician Paul (Dan) Mercer - Student Fisheries Technician Matt Owen - Student Fisheries Technician Melissa Wartman - Student Fisheries Technician

# **Enforcement Branch**

Matt Orok – Enforcement Supervisor, Lake Ontario Kristi Lowe – Conservation Officer Kyle Wood – Conservation Officer Edwin Van Den Oetelaar – Conservation Officer Randy Tippin – Conservation Officer (Vineland) Rick Andrews – Conservation Officer (Aurora)

# SCIENCE AND INFORMATION RESOURCES DIVISION

# **Applied Research and Development Branch**

Dr. Tim Johnson – Research Scientist Brent Metcalfe – Research Biologist Nina Jakobi – Research Technician Carolina Taraborelli – Research Biologist Brittany Yuill – Student Research Technician

# **Science and Information Branch**

Les Stanfield – Senior Research Biologist

| TO. UPCI AUVITAL DIALL FICIN ALLA LAD DUICUUIC                        | IN TRAD POLICO  | IULC                                                      |                                |                   |                   |
|-----------------------------------------------------------------------|-----------------|-----------------------------------------------------------|--------------------------------|-------------------|-------------------|
| Field or lab project                                                  | Dates           | Species assessed, monitored or stocked                    | Length of data<br>series (yrs) | Lead<br>biologist | Funding<br>source |
| Ganaraska Fishway Rainbow Trout<br>Assessment                         | Mar 29 - Apr 16 | Adult rainbow trout                                       | 37                             | Bowlby            |                   |
| Lake Trout Tug Stocking                                               | Apr 19 - May 7  | Apr 19 - May 7 Juvenile lake trout                        | n/a                            | Daniels           |                   |
| Commercial Catch Sampling                                             | Seasonal        | Lake whitefish                                            | 25                             | Hoyle             |                   |
| American eel trap and transfer                                        | May - June      | American eel                                              | 4                              | Mathers           |                   |
| Moses Saunders Eel Ladder Monitoring                                  | May - Oct       | Migrating American eel                                    | 37                             | Mathers           | COA               |
| Chinook Salmon Mark and Tag<br>Monitoring                             | Jun 25 - Sep 4  | Chinook salmon                                            | 1                              | Bowlby            |                   |
| Eastern Lake Ontario and Bay of Quinte<br>Community Index Netting     | Jun 28 - Sep 10 | Eastern Lake Ontario and the Bay of Quinte fish community | 53                             | Hoyle             |                   |
| St. Lawrence River Fish Community Index<br>Netting - Lake St. Francis | Sep 13 - Sep 24 | Walleye, yellow perch, northern pike                      | 26                             | Schaner           | COA               |
| Hamilton Harbour Nearshore Community<br>Index Netting                 | Aug 3 - Aug 13  | Nearshore fish community                                  | ε                              | Hoyle             | COA               |
| Upper Bay of Quinte Nearshore<br>Community Index Netting              | Aug 30 - Sep 17 | Aug 30 - Sep 17 Nearshore fish community                  | 6                              | Hoyle             | COA               |
| Toronto Harbour Nearshore Community<br>Index Netting                  | Aug 30 - Sep 10 | Nearshore fish community                                  | ε                              | Hoyle             | COA               |
| Credit River Chinook Assessment                                       | Sep 27 - Oct 1  | Adult Chinook salmon                                      | 41                             | Bowlby            |                   |
| Atlantic Salmon Parr Survey                                           | Oct 4 - Oct 22  | Juvenile Atlantic salmon                                  | 4                              | Bowlby            | COA               |
| Age and Growth                                                        | Year-round      | Multiple species                                          | n/a                            | Multiple          |                   |

13. Operational Staff Field and Lab Schedule

# **14. Primary Publications 2010**

- Blukacz, E.A. and 11 co-authors. 2010. Linking lake whitefish (*Coregonus clupeaformis*) condition with male gamete quality and quantity. J. Great Lakes Res. 36 (Suppl. 1): 78-83.
- Bowlby, J.N., Hoyle, J.A., Lantry, J.R., and Morrison, B.J. 2010. The status of walleye in Lake Ontario, 1988–2006. In Status of walleye in the Great Lakes: proceedings of the 2006 Symposium. *Edited by* E. Roseman, P. Kocovsky, C. Vandergoot. Great Lakes Fish. Comm. Tech. Rep. No. 69. pp. 165–188.
- Brenden, T.O., and 8 co-authors. 2010. Assessing the health of lake whitefish populations in the Laurentian Great Lakes: Lessons learned and research recommendations. J. Great Lakes Res. 36 (Suppl. 1): 135-139.
- Dobiesz, N.E., Hecky, R.E., Johnson, T.B., Sarvala, J., Dettmers, J.M., Lehtiniemi, M., Rudstam, L.G., Madenjian, C.P., Witte, F. 2010. Metrics of ecosystem status for large aquatic systems – a global comparison. J. Great Lakes Res. 36: 123-138.
- Johnson, J.H., Ross, R.M., McCullough, R.D., Mathers, A. 2010. Diet shift of double-crested cormorants in eastern Lake Ontario associated with the expansion of the invasive round goby. J. Great Lakes Res. 36: 242–247.
- Johnson, J.H., Ross, R.M., McCullough, R.D., Mathers, A. 2010. A comparative analysis of double-crested cormorants diets from stomachs and pellets from two Lake Ontario colonies. J. Freshw. Ecol. 25: 669-671.
- Legler, N., Johnson, T.B., Heath, D.D. and Ludsin, S.A. 2010. Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. Trans. Amer. Fish. Soc. 139: 868-875.
- Muir, A.M., Sutton, T.M., Arts, M.T., Claramunt, R.M., Ebener, M.P., Fitzsimons, J.D., Johnson, T.B., Kinnunen, R.E., Koops, M.A., Sepúlveda, M.M. 2010. Does condition of lake whitefish spawners affect physiological condition of juveniles? J. Great Lakes Res. 36 (Suppl. 1): 92-99.
- Reichert, J.M., Fryer, B.J., Pangle, K.L., Johnson, T.B., Tyson, J.T., Drelich, A.B., and Ludsin, S.A. 2010. River plume use during the pelagic larval

stage benefits recruitment of a lentic fish. Can. J. Fish. Aquat. Sci. 67: 987-1004.

- **Stewart, T.J.**, Johannsson, O., Holeck, K., Sprules, W.G., and O'Gorman, R. 2010. The Lake Ontario zooplankton community before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. J. Great Lakes Res. 36: 596-605.
- Stewart, T.J., O'Gorman, R., Sprules, W.G., and Lantry, B.F. 2010. The bioenergetic consequences of invasive-induced food web disruption to alewives. N. Am. J. Fish. Manag. 30: 1485-1504.
- Taraborelli, A.C., Fox, M.G., Johnson, T.B., and Schaner, T. 2010. Round goby (*Neogobius melanostomus*) population structure, biomass, prey consumption and mortality from predation in the Bay of Quinte, Lake Ontario. J. Great Lakes Res. 36: 625-632.
- Walsh, M.G., Lantry, B.F., Boscarino, B., Bowen, K., Gerlofsma, J., Schaner, T., Back, R., Questel, J., Smythe, A.G., Cap, R., Goehle M., Young, B., Chalupnicki, M., Johnson, J.H., and McKenna Jr., J.E. 2010. Early observations on an emerging Great Lakes invader *Hemimysis anomala* in Lake Ontario. J. Great Lakes Res. 36: 499-504.

50968 (0.275 k P.R., 11 03 18) ISSN 1201-8449